Ichthyosaur clades illustrated and reconsidered

Traditionally, questions still stir
about the origin of the clade Ichthyosauria and about interrelationships between clade members (Fig. 1). Wikipedia offers several variations of interrelations while reporting, “The origin of the ichthyosaurs is contentious.” 

Those questions do not stir
in the large reptile tree (LRT, 1327 taxa, subset Fig. 1) which confidently nests ichthyosaurs arising from Wumengosaurus, mesosaurs + thalattosaurs and basal sauropterygians in order of increasing distance. All candidate taxa are tested here, minimizing uncertainty, increasing confidence. Taxon exclusion is the chief problem robbing paleontologists of the joy of knowing where ichthyosaurs come from. For some reason, Wumengosaurus never seems to make the ichthyosaur inclusion list. Wikipedia reports, “It is unknown exactly what Hupehsuchus is related to.” 

Figure 1. Subset of the LRT focusing on the clade Ichthyosauromorpha.

Figure 1. Subset of the LRT focusing on the clade Ichthyosauromorpha.

Side note:
The ichthyosaur mimics, Cartorhynchus and Sclerocomus, nest not as a basal ichthyosaurs, but as basal sauropterygians (contra Motani et al. 2014 and Jiang et al. 2016) in the LRT. More details here.

Figure 2. Basal Ichthyosauria, including Wumengosaurus, Eohupehsuchus, Hupehsuchus and Thaisaurus

Figure 2. Basal Ichthyosauria, including Wumengosaurus, Eohupehsuchus, Hupehsuchus and ThesaurusFigure 2. Basal Ichthyosauria, including Wumengosaurus, Eohupehsuchus, Hupehsuchus and Thaisaurus. Note the spine tables on the dorsal vertebrae and the general morphology of the skulls. Note the phylogenetic miniaturization with Thaisaurus at the genesis of the Ichytopterygia/Ichthyosauria. Shorter neck, shorter tail, paddle-like forelimbs are all juvenile traits retained in precocious adults.

Readers know
Wumengosaurus (Fig. 2) has been nested as the basalmost ichthyosaur here since 2011.  Hupehsuchids and Thaisaurus have been linked to ichthyosaurs from their discovery on, but similar-looking outgroup taxa, like Wumengosaurus and mesosaurs, have been ignored for reasons unknown. Tall dorsal vertebrae topped by spine tables help link these taxa together.

Slightly more fish-like ichthyosaurs
begin to evolve with the appearances of Early Triassic Utatsusaurus + Late Triassic Shastasaurus (Fig. 3), both comparable to tiny hupehsuchids and Thaisaurus.

FIgure 3. Utatsusaurus compared to Shastasaurus, both at least 3m long. Shastasaurus has a large skull and more robust limbs, especially the hind limbs. 

FIgure 3. Utatsusaurus compared to Shastasaurus, both at least 3m long. Shastasaurus has a large skull and more robust limbs, especially the hind limbs.

Early Triassic
Grippia and Late Triassic Mikadocephalus (Fig. 4) become more dolphin-like. Tiny Early Triassic Parvinatator and Chaohusaurus show that Early Triassic ichthyosaurs had already radiated widely having split from mesosaurs in the Early Permian. At present, no Permian ichthyosaurs are known, but someday they will be discovered.

Late Triassic
Qianichthyosaurus and Besanosaurus evolve a longer rostrum and longer fins derived from shorter fins at the genesis of the Chaohusaurus clade (Fig. 4).

Middle Triassic
Phalarodon and Contectopalatus developed a long narrow rostrum without elongating the limbs (Fig. 4). Moreover, the dorsal cranium develops large ridges, anchors for powerful jaw muscles not seen in prior taxa with flat-top skulls.

Figure 3. Members from three clades within Ichthyosauria.

Figure 4. Members from three clades within Ichthyosauria.

The Middle Triassic
sub-meter-long Mixosaurus had a semi-dolphin-like body that became more elongated with longer necks, tiny teeth and giant descendants like Middle Triassic Cymbospondylus and even more gigantic (20m) toothless Late Triassic Shonisaurus sikanniensis (Fig. 5, distinct from Shonisaurus popularis, Fig. 7). Late Triassic, short-snouted, toothless 10m long Guanlingsaurus had an odd twice-as-wide-as-all skull.

Figure 2. Ichthyosaurs from the Mixosaurus - Cymbospondylus clade, another clade trending toward gigantism.

Figure 5. Ichthyosaurs from the Mixosaurus – Cymbospondylus clade, another clade trending toward gigantism, both to scale (in yellow) and scaled to similar snout-tail lengths (above).

Speedy dolphin-like and dolphin-to-killer-whale-sized ichthyosaurs
like Wimanius, Platypterygius and Guizhouichthyosaurus (Fig. 6) split off next. Middle Triassic ‘Cymbospondylus’ buchseri with a 90cm long skull is basal to Late Triassic Shonisaurus popularis with a 3m skull and a 15m overall length with elongate flippers and a much longer rostrum.

FIgure 3. Ichthyosaur skulls from the Platypterygius - Shonisaurus clade.

Figure 6. Ichthyosaur skulls from the Platypterygius – Shonisaurus clade. See figure 6 for full body fossil graphics.

This is another clade of increasingly gigantic taxa,
but only the basal taxa, like Platypterygius, survived past the end of the Triassic.

Figure 3. Ichthyosaurs from the Platypterygius - Shonisaurus clade.

Figure 7. Ichthyosaurs from the Platypterygius – Shonisaurus clade. to scale. This clade trends toward gigantism. See figure 5 for skulls only.

The final clade of ichthyosaurs: Thunnosauria
are truly highly derived, dolphin-like and the speedsters of the Ichthyosauria. These start with Icthyosaurus and continue through Ophthalmosaurus, Leptonectes, tiny Hauffiopteryx and swordfish-like Eurhinosaurus with the longest rostrum and control surfaces in the Ichthyosauria (Fig. 8). This clade also had the largest eye/cranium ratios.

Figure 4. Ichthyosaurus - Eurhinosaurus clade to scale. This are the tuna-like speed demons of the Mesozoic.

Figure 8. Ichthyosaurus – Eurhinosaurus clade to scale. This are the tuna-like speed demons of the Mesozoic.

Compare this cladogram
(Fig. 1) of ichthyosaurs to competing cladograms (the latest, so far as I have found, is Moon 2017) and see if the others provide the gradual accumulation of traits shown here. That’s how you know, after all the scores have been entered, if the cladogram makes sense. (And check to see if any include Wumengosaurus. Ji et al. 2016 does not.)

Figure 7. Suevoleviathan

Figure 9. Suevoleviathan with new identities for the now smaller quadratojugal (qj) and a larger size for the now larger postorbital (por).

Moon et al. 2017 ran the most recent analysis
of the Ichthyosauria. Unequivocally resolved clades include Ichthyopterygia, Ichthyosauria, Shastasauria, Euichthyosauria, Parvipelvia and Neoichthyosauria, but with variation in their taxonomic components. Mixosauridae and Ophthalmosauridae are similarly recovered, but their definitions are modified to stem-based definitions to prevent substantial variation of included taxa. Several genera are not monophyletic in Moon et al.: Brachypterygius, Leptonectes, Mixosaurus, OphthalmosaurusParaophthalmosaurusPhalarodonPlatypterygiusStenopterygiusTemnodontosaurus and Undorosaurus. Moon et al. conclude: “Complex and variable relationships suggest the need for new characters and a re-evaluation of the state of ichthyosaur phylogenetics.”

Figure 1. Ichthyosaur skulls in phylogenetic order (top to bottom). Those below the red line have not been ordered yet. All of those below the red line have a naris/lacrimal contact and many do not have a naris/maxilla contact. They are mostly Jurassic and Cretaceous taxa. Boxed specimens are not yet tested. Many illustrations from Maisch and Matzke 2000. Click to enlarge. Not to scale.

Figure 10. Ichthyosaur skulls in phylogenetic order (top to bottom). Many illustrations from Maisch and Matzke 2000. Click to enlarge. Not to scale.

Here are a few current ichthyosaur clades and their definitions
with comments regarding their validity and membership in the LRT.

  1. Ichthyosauromorpha – The last common ancestor (LCA) of Ichthyosaurus + Hupesuchia and all descendants. That LCA in the LRT is Wumengosaurus.
  2. Ichthyosauriformes – All ichthyosauromorphs closer to Ichthyosaurus than to Hupehsuchus. Whenever Cartorhynchus is a basal member, as it is within the current definition, this clade is a junior synonym for Enaliosauria in the LRT. That LCA in the LRT is Thaisaurus (and kin).
  3. Ichthyopterygia – last common ancestor of Ichthyosaurus, Utatsusaurus and Parvinatator (Motani 1999). That LCA in the LRT and Motani 1999 is Utatsusaurus.
  4. Eoichthyosauria – The LCA of Grippia and Ichthyosaurus (Motani 1999). That LCA in the LRT and Motani 1999 the LCA is Grippia.
  5. Ichthyosauria – all eoichthyosaurs more closely related to Ichthyosaurus than to Grippia (Motani 1999). That LCA in the LRT is Mikadocephalus (and kin). That LCA is Cymbospondylus (both species) in Motani 1999,
  6. Merriamosauria – The LCA of Shastasaurus and Ichthyosaurus. That LCA in the LRT is Utatsusaurus (junior synonym of Ichthyopterygia). That LCA in Motani 1999 is Shastasaurus.
  7. Shastasauria – All merriamosaurs more closely related to Shastasaurus than to Ichthyosaurus. In Motani 1999, this clade includes Besanosaurus, Shonisaurus and Shastasaurus.
  8. Parvipelvia –  the LCA of HudsonelpidiaMacgowaniaIchthyosaurus and all of its descendants.
  9. Thunnosauria – the LCA of Ichthyosaurus communis and Stenopterygius quadriscissus and all of its descendants
  10. Eurhinosauria – The LCA of Eurhinosaurus and Leptonectes (Motani 1999). The LCA in the LRT is Leptonectes. In Motani 1999 this clade nests outside the Thunnosauria.

References
Ji C, Jiang D-Y, Motani R, Rieppel O, Wei-Cheng Hao and Sun Z-Y 2016. Phylogeny of the Ichthyopterygia incorporating recent discoveries from South China, Journal of Vertebrate Paleontology, 36:1, DOI: 10.1080/02724634.2015.1025956
Jiang D-Y, Motani R, Huang J-D, Tintori A, Hu Y-C, Rieppel O, Fraser NC, Ji C, Kelley NP, Fu W-L and Zhang R 2016. A large aberrant stem ichthyosauriform indicating early rise and demise of ichthyosauromorphs in the wake of the end-Permian extinction. Nature Scientific Reports online here.
Maisch MW 2010. Phylogeny, systematics, and origin of the Ichthyosauria – the state of the art. Palaeodiversity 3:151-214.
Moon BC 2017. A new phylogeny of ichthyosaurs (Reptilia: Diapsida). Journal of Systematic Palaeontology  DOI: 10.1080/14772019.2017.1394922
Motani R 1999. Phylogeny of the Ichthyopterygia. Journal of Vertebrate Paleontology 19:3, 473-496, DOI: 10.1080/02724634.1999.10011160
Motani R et al. 2014. A basal ichthyosauriform with a short snout from the Lower Triassic of China. Nature doi:10.1038/nature13866

wiki/Cartorhynchus
wiki/Sclerocormus

Ichthyosaur experts

  1. Dean Lomax – U of Manchester
  2. Ryosuke Motani – U of California, Davis
  3. http://ichthyosaur.org – Last updated 11-15-2000.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.