Earlier
we looked at the first part and second part and third part of Marjanovic’s 2019 chronological recalibration of vertebrate nodes. Today we continue in part 4 of 5.
Mammalia (Prototheria + Theria)
Based on the literature, Marjanovic 2019 considers morganucodontans and tiny Hadrocodium to be mammalomorphs, not mammals. He is unsure about haramiyidans. With regard to the first dichotomy of mammals, he reported, “I recommend a hard minimum age of 179 Ma for this calibration.”
By contrast the large reptile tree (LRT, 1630+ taxa) nests Morganucodon (Late Triassic, 205 mya), Hadrocodium (Early Jurassic) and Henosferus (Middle Jurassic) together in the most basal subclass within Theria, part of the first dichotomy within Mammalia. Marjanovic considered Henosferus one of the oldest uncontroversial mammals at 179 mya. Megazostrodon is a late surviving (early Jurassic) last common ancestor taxon of all mammals in the LRT. It must have appeared prior to Morganucodon in the Late Triassic.
Theria (Metatheria + Eutheria)
Marjanovic reports, “The oldest securely dated eutherian is Ambolestes at 126 Ma.” Then he reports, “Accepting that Juramaia is not from the Lanqi Fm, I propose 160 Ma as the soft maximum age of this calibration.”
By contrast, Morganucodon (Late Triassic, 210mya) nests as the oldest therian. Ambolestes nests with Didelphis, the opossum, within the Theria, not Eutheria. Thereafter the traditional Metatheria splits in three clades in the LRT, a largely herbivorous branch with Glironia and Marmosops at its base, and a largely carnivorous branch with Monodelphis and Chironectes at the base of one branch and Caluromys + Placentalia at yet another. So, while Caluromys (Fig. 3) retains a pouch, it is also the last common ancestor of all placentals.

Figure 1. Pteropus and Caluromys compared in vivo and three views of their skulls. Caluromys is in the ancestry of bats and shows where they inherited their inverted posture.
Marjanovic often errors by not including extant taxa that are more primitive than extinct taxa that are older. This comes back to bite him several times, especially so when he relies on a single fossil tooth rather than a living animal he can hold. The LRT tests both living and extinct taxa to minimize taxon exclusion.
Marjanovic discusses the possibility that Sinodelphys is the oldest known metatherian, but Sinodelphys nests as one of the most primitive prototherians in the LRT, as we learned earlier here.
Placentalia (Atlantogenata + Boreo(eu)theria)
In the world of gene studies, Atlantogenata include the highly derived elephants and anteaters. The Boreoeutheria include the highly derived whales, humans and hooved mammals. Genomic studies deliver false positives, and these are among the most blatant, so ignore these. They don’t deliver a gradual accumulation of derived traits.
By contrast, in the LRT the first dichotomy in the placentalia splits arboreal Vulpavus from arboreal Nandinia and thereafter arboreal Carnivora (mongooses and raccoons) from arboreal Volantia (bats and colugos) + arboreal Primates and the rest of the Placentalia. All of these civet-like and tree opossum-like taxa look like Caluromys (Fig. 1), as you can see. Elephants and anteaters come later. Adding living taxa to Marjanovic’s search for primitive placentals would have helped clarify his research and conclusions, preventing him form perpetuating old myths.
Carnivora (Feliformia + Caniformia)
Marjanovic errs by reporting the basal dichotomy within Carnivora splits cats from dogs.
By contrast in the LRT cats and dogs are closely related and derived taxa, not basal. As mentioned above, civets, mongooses and raccoons are basal Carnivora.
Euarchontoglires/Supraprimates (Gliriformes + Primatomorpha)
Marjanovic discusses several poorly preserved, sometimes one tooth only, fossil taxa from the early Paleocene (65mya). Some of these are anagalids, which nest at the base of yet another clade in the LRT, the one with tenrecs and odontocetes (toothed whales).
By contrast in the LRT lemur-like adapids appear at the base of the Primates. Tree-shrews appear at the base of the Glires.
Marsupialia (Didelphimorphia – Paucituberculata + Australidelphia)
- Didelphimorphia = opossums from North America
- Paucituberculata = South American marsupials, sans Dromiciops
- Australidelphia = Australian and Asian marsupials, plus Dromiciops
Marjanovic reports, “I therefore propose 55 Ma as a probably overly strict hard minimum age for this calibration.” He later reports, “Rather than the beginning of the Maastrichtian, I propose the beginning of deposition of the Lance and Hell Creek formations, where Glasbius has been found, as the hard maximum age for this calibration, which I estimate as 68 Ma.”
See Figure 1 for a different three-part marsupial split from the LRT. Dromiciops is only one of many similar herbivorous marsupials. Middle Late Cretaceous Asioryctes is a basal member of the largely herbivorous clade. Early Cretaceous Vincelestes is a basal member of the largely carnivorous clade. So Middle to Late Jurassic (175mya) is a better estimate for the genesis of marsupial diversity. That means marsupials dispersed during the Pangean era without the need of an oceanic dispersal.
Marjanovic mistakenly reports, “Marsupials, other metatherians and indeed other therians are wholly absent from the Late Cretaceous mammaliform record of South America, which consists instead of gondwanatherian haramiyidans and a very wide variety of meridiolestidan stem-theriiforms.”
- Meridiolestida = non-therian mammals (= Prototheria, Montremata) seems to be based on tooth traits. Cronopio and Necrolestes are among the only tested taxa also found in the LRT. Cronopio is an omnivorous member of the pre-metatherian Theria in the LRT. Necrolestes is a basal member of the placental clade, Glires, derived from the treeshrew Tupaia in the LRT. So, again, we have a mismatch due to not testing all the mammals against all the mammals. That is what makes the LRT such a powerful tool that should be more widely used to avoid such old school mythology.
More tomorrow as we conclude part 5 of 5.
References
Marjanovic D 2019. Recalibrating the transcriptomic timetree of jawed vertebrates.
bioRxiv 2019.12.19.882829 (preprint)
doi: https://doi.org/10.1101/2019.12.19.882829
https://www.biorxiv.org/content/10.1101/2019.12.19.882829v1