Was the AMNH Tanytrachelos ‘with child’?

Tanytrachelos ahynis (Olsen 1979, holotype AMNH 7496; holotype Fig. 1) Latest Triassic, 200 mya, was derived from Macrocnemus and was a sister to Langobardisaurus and Tanystropheus. All are tritosaur lepidosaurs in the lineage of the terrestrial ancestors of pterosaurs, the Fenestrasauria… all ultimately derived from an earlier sister to late-surviving Huehuecuetzpalli and Tijubina.

Figure 1. AMNH 7496 holotype of Tanytrachelos with original tracing from Olsen 1979. DGS colors added.

Figure 1. AMNH 7496 holotype of Tanytrachelos with original tracing from Olsen 1979. DGS colors added.

The AMNH specimen
(Fig. 1) preserved in ventral exposure, appears to have two halves of a leathery eggshell and an ‘exploded’ embryo, best described as several dozen tiny bones that should not be there, unless, perhaps this was a gravid adult… or something else, like gastroliths, undigested prey… hard to tell. In any case, some of the pectoral bones also have new identities here.

Figure 5. Hypothetical Tanystropheus embryo compared to Dinocephalosaurus embryo.

Figure 2. Hypothetical Tanystropheus embryo compared to Dinocephalosaurus embryo. These are the sorts and sizes of bones one should look for in any maternal Tanytrachelos.

Figure 1. Tanytrachelos hopping to match Gwyneddichnium tracks (see figure 2).

Figure 3. Tanytrachelos hopping to match Gwyneddichnium tracks (see figure 2).

Distinct from Langobardisaurus,
Tanytrachelos has twelve cervicals, but none were gracile. The posterior cervical ribs had large heads that kept the rods far from each centrum. Heterotopic bones were present. These appear to be elongated chevrons, as in Tanystropheus. Rare hopping prints (Fig. 2) match the size and shape of Tanytrachelos pedes.


Figure 4. The sternal complex of several other tritosaurs. Tanytrachelos is closer to Tanystropheus, not quite like any of these related taxa, but all are informative.

The elliptical sternum
of Tanytrachelos was wide, as in Langobardisaurus (Fig. 3), but the clavicle remained gracile, as in Huehuecuetzpalli (Fig. 3). The humerus was slightly bowed. Metacarpal I aligned with the others. Metatarsal III was the longest. Digit III was the longest as in Langobardisaurus tonelloi.

Olsen PE 1979. A new aquatic eosuchian from the Newark Supergroup Late Triassic-Early Jurassic) of North Carolina and Virginia. Postilla 176: 1-14.
Smith AC 2011. Description of Tanytrachelos ahynis and its implications for the phylogeny of Protorosauria. PhD dissertation. Virginia Polytechnic Institute and State University.


SVP 2018: New Mammalodon relative with marine worm bores

Shipps, Peredo and Pyenson 2018 report
on a Late Oligocene mammalodontid, the first from the Northern Hemisphere. “The skull and teeth of this specimen bear boreholes from bone-eating Osedax worms, providing valuable information on the taphonomy of the specimen. Critically, this specimen preserves intact ear bones and several teeth.”

Osedax is marine worm.
According to Wikipedia, “The worms bore into the bones of whale carcasses to reach enclosed lipids, on which they rely for sustenance.”

Figue 1. Mammalodon nests within the clade Anthracobune basal to desmostylians and mysticetes.

Figue 1. Mammalodon nests within the clade Anthracobune basal to desmostylians and mysticetes.

Mammalodon (Fig. 1) is indeed in the lineage of mysticete whales, but several nodes distant (Fig. 2) in the large reptile tree. It is related to Janjucetus and Anthracobune, basal to desmostylians, not far from hippos. Desmostylians are also found along the Pacific rim, so this appearance of an ancestor in Washington state is expected. All are mesonychids, not ungulates.

Figure 2. Subset of the LRT focusing on mysticetes, including Sitsqwayk, and their predecessors.

Figure 2. Subset of the LRT focusing on mysticetes, including Sitsqwayk, and their predecessors.

Shipps BK, Peredo CM and Pyenson ND 2018. An unexpected Northerner with burrowed bones: a new mammalodontid (Mysticeti) from the Pacific Northwest with Osedax bores provides insight into Oligocene marine taphonomy and mysticete evolution. SVP abstracts.



Fish nibbles on Pteranodon metacarpal

Figure 1. Fish teeth compared to grazed Pteranodon metacarpal

Figure 1. Fish teeth compared to grazed Pteranodon metacarpal

Ehret and Harrell 2018
bring us news from Alabama of two distinct sets of tooth marks on a Pteranodon (Fig. 2) metacarpal (Fig. 1). They report:

“The Pteranodon specimen exhibits serrated teeth marks on the surface of the bone and a second set of larger, unserrated teeth marks unlike those of any contemporary shark species. These feeding traces compare favorably with the tooth spacing and morphology of Squalicorax kaupi, and a small to moderate-sized saurodontid fish, such as Saurodon or Saurocephalus, respectively. In both instances, feeding traces appear to be scavenging events due to the lack of any healing or bone remodeling. The specimen represents a pterosaur that either fell into marine waters or was washed out from nearshore areas and then scavenged by both a chondrichthyan and osteichthyan.”

“Many fossils from late Cretaceous Alabama appear to have been nibbled by sharks, including sea turtles and dinosaurs, which are often ‘covered in predation marks,’ says Ehret.”

NatGeo publicized the find by talking to some pterosaur experts, “Pterosaurs actually had a lot of meat on their skeletons,” says Michael Habib, a pterosaur expert at the University of Southern California who was not involved with the latest find. “They were not the skinny animals often depicted in films and art. The flight muscles in particular would have made a great meal.”

Pterosaur metacarpals,
like all metacarpals, actually are sinewy and have little to no associated muscle.

Habib adds,
“Pteranodon also inhabited this coastal environment during the late Cretaceous, making a living snatching smaller fish from the shark-filled waters. Pterosaurs could float, but being less buoyant than birds, they probably didn’t sit on the surface for long. Some species, including Pteranodon, did likely plunge into the water for prey. “They could then quickly take back off from the surface. But these diving pterosaurs might have been vulnerable to sharks just after they entered the water,” he says.

M. Witton concluded,
“It’s nice to know what species were interacting in this way.”

Ehret corrected the pterosaur experts,
“It’s also possible that the animal died near the shore and was scavenged when it washed out to sea.”

Figure 3. Triebold Pteranodon in floating configuration. Center of balance marked by cross-hairs.

Figure 2 Triebold Pteranodon in floating configuration. Center of balance marked by cross-hairs.

Contra Habib’s statement
Pteranodon was at least as buoyant as a pelican. It has been widely known for over a century that pterosaur bones are thinner than bird bones and Pteranodon metacarpals, in particular, were hollow like pontoons (Fig. 2).

the bite marks represent curiosity, not predation, a point understood by Ehret and Harrell.

Ehret DJ and Harrell TL Jr. 2018. Feeding traces of a Pteranodon (Reptilia: Pterosauria) bone from the late Cretaceous (Campanian) Mooreville Chalk in Alabama, USA. Palaios 33(9):414–418.


Tanystropheus: aquatic? or terrestrial?

Added September 21, 2020:
Think about a bubble net, as in humpback whales, coming form the long, dead=air storage vessel that is that elongate trachea. That long neck rotating like an inverted cone to surround confused fish just above the jaws.

Beard and Furrer 2017 conclude (or do they?)
that Tanystropheus (Figs. 1–3) was likely terrestrial.

From the abstract
“The Middle Triassic protorosaur Tanystropheus has been considered as both a terrestrial and aquatic taxon based on several lines of biomechanical and distributional evidence, but determining conclusively which habitat was most likely has remained problematic. The preservation of Tanystropheus was found to be more similar to Macrocnemus than Serpianosaurus implying carcasses of Tanystropheus originated in terrestrial or at least marginal and near-shore, shallow marine settings. That these were also the most probable habitats in life is supported by the relatively lower number of Tanystropheus (and also Macrocnemus) compared to Serpianosaurus.”

Tanystropheus underwater among tall crinoids and small squids.

Figure 1. Tanystropheus in a vertical strike elevating the neck and raising its blood pressure in order to keep circulation around its brain and another system to keep blood from pooling in its hind limb and tail.

Tanystropheus was not a protorosaur, nor a member of the Archosauromorpha. It was a tritosaur lepidosaur as taxon inclusion would have informed the authors.

Tanystropheus and kin going back to Huehuecuetzpalli.

Figure 2. Tanystropheus and kin going back to Huehuecuetzpalli.

the smaller Tanystropheus considered a juvenile by the authors was probably a different genus, based on a long list of distinct traits, including its distinct teeth. Moreover the authors did not realize that several large putative Tanystropheus specimens have distinct skull morphologies that are not congeneric (Fig. 2). But all that is beside the point…

Figure 2. Tanystropheus with skull reconstructions based on two specimens, exemplar i and exemplar m.

Figure 3. Tanystropheus with skull reconstructions based on two specimens, exemplar i and exemplar m.

The authors report:
“An alternative aquatic lifestyle has also been suggested for Tanystropheus (Tschanz 1988). The main argument is the supposed inflexibility of the neck due to the elongated vertebrae and bundled cervical ribs that prevented all but a horizontal position (Tschanz 1988; Renesto 2005).”

Or any aquatic position,
including vertical (Fig. 1). The authors do cite the hooks from squid suckers found in the stomach region (Wild 1973; Fig. 1) and other prior hypotheses, then describe the taphonomy of the skeletons. The authors cite trackway data matched to Tanystropheus, (Fig. 3) ignoring the fact that even sea turtles leave trackways on beaches when they lay eggs.

Figure 3. Tanystropheus specimens matched to Synaptichnium tracks. The match is good in each case, except for one toe or the other.

Figure 3. Tanystropheus specimens matched to Synaptichnium tracks. The match is good in each case, except for one toe in each trackway. So, is this good enough? Or is this cause for dismissal?

Did the authors test the tracks?
No. But that is done here (Fig. 3). In each case there is a pretty good match—except for one toe in each case. The manus and pes have been scaled to match the tracks and thus are not matched to the scale bars which are for the tracks alone. Even so, the scale for the trackmakers’ extremities is a pretty good match! The case is not rock solid, but pretty good, that big and small tanystropheids made those Synaptichnium tracks.

The journey from the biosphere to the lithosphere was investigated. The terrestrial Ticinosuchus, a type of archosauriform, was discovered in these beds along with the aquatic Serpianosaurus, a type of pachypleurosaur, according to the authors (a basal thalattosaur in the large reptile tree). So was the tritosaur lepidosaur, Macrocnemus. The authors wondered if the taphonomy of Tanystropheus would be more similar to the terrestrial or the aquatic taxa. Wild (1973) listed and illustrated  over a dozen specimens of Tanstropheus in various stages of completeness and articulation. The water depth of fossil deposition was estimated between 30 and 130m with anoxic bottom conditions. So ALL the specimens were transported horizontally and vertically. Importantly, fragmentary skeletons of Tanystropheus were excluded from this study. From the remaining data the authors compiled articulation and completeness scores.

Why did they throw out competing data?
We’ve seen this before with Hone and Benton (2007, 2008). Given that they used only the more complete specimens (and who knows how many incomplete specimens were never collected), the authors report Tanystropheus specimens exhibited 0-58% articulation and 36–97% completeness. Larger specimens tended to be more complete. The authors also note that Serpianosaurus alone lacks obvious features that promoted buoyancy, like hollow cervicals in Tanystropheus. The authors cite Brand et al. 2003, who noted “lizard skin in water formed a limp but durable bag containing the bones” during water transport.

The authors conclude
“Tanystropheus langobardicus at least died in, but probably also lived in a terrestrial or near-shore marine setting.” The presence of squid hooks in the stomach “does not necessarily preclude a more-normal niche in shallow water.” 

‘Near shore marine’ = aquatic.
So the authors conclusion is no conclusion at all. Contra their headline, they did not ‘determine’ anything. It could have been on the beach, or in shallow water. Is the marine iguana (Amblyrhynchus cristatus) aquatic? or terrestrial? What would you say if you only found its skeleton? Or its footprints?

The good evidence continues to be
the stomach contents as the best evidence for life style (feeding niche) for the giant forms. Let the smaller ones feed in shallower waters. Let both give birth and warm up on land, like marine iguanas.

Bassani F 1886. Sui Fossili e sull’ età degli schisti bituminosi triasici di Besano in Lombardia. Atti della Società Italiana di Scienze Naturali 19:15–72.
Beard SR and Furrer 2017. Land or water: using taphonomic models to determine the lifestyle of the Triassic protorosaur Tanystropheus (Diapsida, Archosauromorpha). Palaeobiodiversity and Palaeoenvironments (advance online publication) DOI: https://doi.org/10.1007/s12549-017-0299-7
Diedrich C 2008. Millions of reptile tracks—Early to Middle Triassic carbonate tidal flat migration bridges of Central Europe—reptile immigration into the Germanic Basin. Palaeogeography, Palaeoclimatology, Palaeoecology, 259, 410–423.
Haubold HA 1983. Archosaur evidence in the Buntsandstein (Lower Triassic). Acta Palaeontologica Polonica, 28, 123–132.
Li C 2007. A juvenile Tanystropheus sp.(Protoro sauria: Tanystropheidae) from the Middle Triassic of Guizhou, China. Vertebrata PalAsiatica 45(1): 37-42.
Meyer H von 1847–55. Die saurier des Muschelkalkes mit rücksicht auf die saurier aus Buntem Sanstein und Keuper; pp. 1-167 in Zur fauna der Vorwelt, zweite Abteilung. Frankfurt.
Nosotti S 2007. Tanystropheus longobardicus (Reptilia, Protorosauria: Reinterpretations of the anatomy based on new specimens from the Middle Triassic of Besano (Lombardy, Northern Italy). Memorie della Società Italiana di Scienze Naturali e del Museo Civico di Storia Naturale di Milano, Vol. XXXV – Fascicolo III, pp. 1-88
Peyer B 1931. Tanystropheus longobardicus Bass sp. Die Triasfauna der Tessiner Kalkalpen. Abhandlungen Schweizerische Paläontologie Gesellschaft 50:5-110.
Rieppel O, Jiang D-Y, Fraser NC, Hao W-C, Motani R, Sun Y-L & Sun ZY 2010. Tanystropheus cf. T. longobardicus from the early Late Triassic of Guizhou Province, southwestern China. Journal of Vertebrate Paleontology 30(4):1082-1089.
Wild R 1973. Die Triasfauna der Tessiner Kalkalpen XXIII. Tanystropheus longobardicus (Bassani) (Neue Ergebnisse). – Schweizerische Paläontologische Abhandlungen 95: 1-162 plus plates.


Wukongopterus – with a broken leg

Pterosaur fossils can get pretty messed up over 150 million years. Most of that happens during their lifetime or shortly thereafter as they sink into sediments.

Wukongopterus (IVPP V15113 , Wang et al. 2009) is a not-quite complete specimen that preserves a broken leg (Fig. 1). The Daohugou Bed of the Tiaojishan Formation was originally described as Early Cretaceous, but is now dated to the Middle/Late Jurassic boundary. This makes more sense with regard to phylogenetic order.

Figure 1. Wukongopterus with a broken tibia (in pink).

Figure 1. Wukongopterus with a broken tibia (in pink). It looks like the tibia was kept in place by tendons and dermis after the break, whether before or after death. Compare the broken tibia to the unbroken one. Even the foot was twisted medial to lateral.


Wang X, Kellner AWA, Jiang S and Meng X 2009. An unusual long-tailed pterosaur with elongated neck from western Liaoning of China. Anais da Academia Brasileira de Ciências 81 (4): 793–812.


The T-rex Collagen Controversy

Soft Tissue, Blood Vessels and Blood Cells in a T-rex Femur?
Mary SchweitzerJack Horner and others made headlines in 2005 when she reported soft organic tissue deep within the femur of a Tyrannosaurus rex (Fig. 1). MSNBC, Scientific American and National Geographic covered this story on the web.


Figure 1. Tyrannosaurus, the dinosaur at the center of the controversy.

The Creationists jumped all over this news  asserting that T-rex was much, much younger.

Here I offer a belated tip of the hat to friend and fellow heretic, Tom Kaye, who showed me his heretical work several years ago while still living in Chicago. Let me state from the start, I’m only pushing competing hypotheses together here. I have not done the testing to weigh in on one side or the other.

Maybe Not…
Kaye, Gaugler and Sawlowicz (2008) reinterpreted the purported collagen as bacterial biolfilms. They reported, “Mineralized and non-mineralized coatings were found extensively in the porous trabecular bone of a variety of dinosaur and mammal species across time. They represent bacterial biofilms common throughout nature. Biofilms form endocasts and once dissolved out of the bone, mimic real blood vessels and osteocytes. Bridged trails observed in biofilms indicate that a previously viscous film was populated with swimming bacteria. Carbon dating of the film points to its relatively modern origin. A comparison of infrared spectra of modern biofilms with modern collagen and fossil bone coatings suggests that modern biofilms share a closer molecular make-up than modern collagen to the coatings from fossil bones. Blood cell size iron-oxygen spheres found in the vessels were identified as an oxidized form of formerly pyritic framboids.” 

This represents a more conservative and rational explanation for the collagen-like structures found in fossil bone. Kaye says that his team was denied access to the original bone, and that continues to this day. Others are in line ahead of him, is what he hears.

When This News Came Out
Several blogs weighed in on the find of the century now reduced to a major controversy. Smithsonian.com reported on both sides of the controversy, concluding, “Personally, I’m leaning toward believing in the extraordinary.” …and Occam’s Razor just took a walk.

Carl Zimmer.com reported, “Schweitzer’s tubes and osteocytes, they argue, are not blood vessels or cells but biofilms formed by bacteria that invaded the fossils after death. In a paper published Monday in the journal PLoS ONE, Kaye and colleagues report that carbon dating of one sample shows that the tubes are at most a few decades old and that their infrared spectra give a closer match to bacterial biofilms than to collagen. Troughs in the walls of the tubes resemble the track a microbe would make crawling through a biofilm, they note. ‘We think that’s one of the smoking guns,’ Kaye says.”

Contradicting Kaye’s Team and Supporting Schweitzer’s Conclusion…
Peterson, Lenczewski and Scherer 2010 reported, “The identification of biomolecules in fossil vertebrate extracts from a specimen of Brachylophosaurus canadensis has shown the interpretation of preserved organic remains as microbial biofilm to be highly unlikely. Results of the study indicate that the crystallization of microbial biofilms on decomposing organic matter within vertebrate bone in early taphonomic stages may contribute to the preservation of primary soft tissues deeper in the bone structure.

And Another… 
San Antonio et al. (2011) reported, “Functionally significant regions of collagen fibrils that are physically shielded within the fibril may be preferentially preserved in fossils. This non-random distribution supports the hypothesis that the peptides are produced by the extinct organisms and suggests a chemical mechanism for survival.”

Then Salzberg et al. (2011) Struck Back with Metagenomics…
In their JVP abstract Salzberg et al. (including Tom Kaye, 2011) recovered  a full characterization of the DNA from a section of Brachylophosaurus canadensis fossil using ‘Metagenomics’ techniques. Soft tissue structures similar to those reported as dinosaurian blood vessels and bone cells were observed providing the platform for analyzing the molecular content of this fossil further. Metagenomics data identified ALL the DNA in the sample giving proportionate ranks to the various molecular species therein. The sample was processed to isolate organic remnants from the intravascular cavities of the fossil’s cortical bone, in order to exclude possible contaminants from the bone surface. DNA from various species of bacteria, plants, fungi, and chordates was detected in the bone. Some modern bird DNA was also found. The presence of modern DNA provided an obstacle to identifying ancient dinosaur molecules. The bacterial DNA provided support for the production of biofilms over the 80-million-year age of the fossil.

The Salzberg findings also came up with a more complete proteome of the ostrich and the previously reported “T. Rex proteins” now found a perfect match in the ostrich sequence suggesting contamination on Schweitzer’s part. The same was true of unreported hemoglobin proteins in the Schweitzer data that also turned out to be a perfect match to ostrich.

A Paleo Fight
There is a paleontological fight going on here. Both opposing hypotheses can’t be right. The opposing forces need to get together and not wait several years between successive arguments. Heretics are sometimes right. Those who test assertions should be considered.

As always, I encourage readers to see specimens, make observations and come to your own conclusions. Test. Test. And test again.

Evidence and support in the form of nexus, pdf and jpeg files will be sent to all who request additional data.

Kaye TG, Gaugler G and Sawlowicz 2008. Dinosaurian Soft Tissues Interpreted as Bacterial Biofilms. PLoS ONE 3(7): e2808. doi:10.1371/journal.pone.0002808
Peterson JE, Lenczewski ME, Scherer RP 2010. Influence of Microbial Biofilms on the Preservation of Primary Soft Tissue in Fossil and Extant Archosaurs. PLoS ONE 5(10): e13334. doi:10.1371/journal.pone.0013334
Salzberg S et al. 2011 abstract. DNA, dinosaurs and metagenomics: a new tool for mass identification of DNA from fossil bone. Journal of Vertebrate Paleontology abstracts 2011.
San Antonio JD, Schweitzer MH, Jensen ST, Kalluri R, Buckley M, et al. 2011. Dinosaur Peptides Suggest Mechanisms of Protein Survival. PLoS ONE 6(6): e20381. doi:10.1371/journal.pone.0020381
Schweitzer MH, Wittmeyer JL, Horner JR, Toporski JK 2005. Soft-tissue vessels and cellular preservation in Tyrannosaurus rex. Science 307: 1952–1955.