Germanodactylus sp. 6592 plate and counterplate

Matching a fossil plate to a counterplate is easy.
Matching a photo of a plate to a photo of counterplate (Fig. 1) requires Photoshop, even if the differences are minute.

Figure 1. Plate and counterplate of the SMNS 6592 specimen referred to Germanodactylus matched in Photoshop.

Figure 1. Plate and counterplate of the SMNS 6592 specimen referred to Germanodactylus matched in Photoshop.

This is the first time I’ve seen
the counterplate to the SMNS 6592 specimen attributed to Germanodactylus. And I think this counterplate is composed of painted plaster. Photoshop was used to match the plate to the counterplate and to trace the resulting elements. As you can see, the pelvis is in an atypical position due to taphonomy (crash landing on its butt?), but everything else seems to be naturally posed with the exception of the displaced and overlapping femora (another results of the crash landing, perhaps).

Advertisements

A giant Romanian pterosaur mandible fragment

FIgure 1. LPB R 2347 largest pterosaur mandible compared to Bakonydraco.

FIgure 1. LPB R 2347 largest pterosaur mandible compared to Bakonydraco.

Vremir et al. 2018
describe a pterosaur mandible fragment (Figs. 1, 2), “This specimen represents the largest pterosaur mandible ever found and provides insights into the anatomy of the enigmatic giant pterosaurs.”

Figure 2. LPR pterosaur mandible compared to related taxa, like Eopteranodon, and to the largest known pterosaur, Quetzalcoatlus. Figure 2. LPR pterosaur mandible compared to related taxa, like Eopteranodon, and to the largest known pterosaur, Quetzalcoatlus.

Figure 2. LPR pterosaur mandible compared to related taxa, like Eopteranodon, and to the largest known pterosaur, Quetzalcoatlus to scale.

It’s worthwhile
to place the jaw fragment in context with other pterosaurs. We don’t have a similar jaw fragment for the big Quetzalcoatlus (Fig. 2), which likely stood twice as tall as the giant eopteranodontid owner of the jaw fragment. Bakonydraco is a likely eopteranodontid, larger than Eopteranodon, but much smaller than the jaw fragment owner.

Earlier this jaw fragment was used as the basis for restoring the rest of this pterosaur as a giant azhdarchid nicknamed, ‘Dracula’ (with beaucoup errors, Fig. 2).

Figure 1. Dracula the giant azhdarchid pterosaur museum mount. Hopefully it's not too late to fix the problems here.

Figure 2. Dracula the giant pterosaur model built and based on the jaw fragment in today’s post. That’s a lot of imagination!

References
Vremir M et al. 2018. Partial mandible of a giant pterosaur from the uppermost Cretaceous (Maastrichtian) of the HaÈeg Basin, Romania. Lethaia doi: https://doi.org/10.1111/let.12268 https://onlinelibrary.wiley.com/doi/abs/10.1111/let.12268

Elgin 2014 PhD dissertation: nits and picks, part 2

Yesterday we looked at
a misidentified pterosaur specimen from the State Museum of Natural History Karlsruhe (SMNK) that wasn’t a Tupuxuara, as originally considered by then PhD candidate, now Dr. Ross Elgin. Consider that blogpost an unlabeled part 1.

Today, in part 2,
we’ll take a look at several other aspects of the Ross Elgin 2014 PhD dissertation that deserve credit and discredit. 

FIgure 1. GIF animation of image from Elgin 2014 comparing wing membrane configurations and a more accurate rendition of what Peters 2002 proposed. See text for list of issues here.

FIgure 1. GIF animation of image from Elgin 2014 comparing wing membrane configurations and a more accurate rendition of what Peters 2002 proposed and Elgin distorted. See text for list of issues here. In reality, like birds, the wings and hind limbs are decoupled. Most pterosaur workers don’t believe the data.

Elgin mistakenly reported,
“The primary flight membrane is reconstructed with an ankle attachment of the trailing edge, a configuration that was never fundamentally altered throughout the evolutionary history of the group.” Elgin ignored the bipedal origin of the Pterosauria, and ignored the narrow-chord wing membrane data that attends every pterosaur fossil that preserves wing membranes, perhaps on the advice of his mentors. And he ignored, or distorted, what Peters 2000 actually proposed for a wing membrane and bone orientation in pterosaurs (Fig. 1).  This may be what happens when you have to feed the fever dreams of a teacher rather than recording actual data. Elgin reported, “I am indebted to both David Hone and Eberhard “Dino” Frey for the opportunity to undertake this project and continue my work on the enigmatic and curious group of animals known as pterosaurs.”

Solutions to problems with Figure 1.

  1. The scapula/coracoid should rotate laterally, as in all articulated fossils
  2. The elbow should angle further posteriorly, as in all articulated fossils (+ in birds and bats)
  3. The pteroid should point to the deltopectoral crest, as in all articulated fossils
  4. The free fingers should point ventrally (in flight). Crushing typically rotates the narrow claws anteriorly.
  5. Metacarpals 1-3 should line up anteriorly, not stack themselves against mc4
  6. Manual 4.4 should articulate at an angle to m4.3, deepening the wing tip
  7. The propatagium should extend only to the deltopectoral crest
  8. The brachiopatagium should stretch between the wingtip and elbow with a fuselage fillet to distal thigh, as in all articulated fossils
  9. The thigh should be more meaty based on the long anterior ilium
  10. The femur should extend laterally to form a horizontal stabilizer (and note the sprawling lepidosaur orientation!)
  11. The femur should be flipped, as shown in Elgin’s figure 3 below.
  12. The uropatagia do not extend to the tiny tail, as in all articulated fossils. Elgin’s essentially creates a single uropatagium, which is a decades-old false paradigm.

If the above illustration by Elgin 2014 looks familiar
it’s because we looked at it earlier here, after publication of Elgin, Hone and Frey 2011. Also check out all the images on this ReptileEvolution page. You might remember these authors employed the fiction of ‘wing membrane shrinkage’ to explain the data, instead of just accepting the data, as is. We have evidence of pterosaur ancestors with wings decoupled from the hind limbs, so there was never a gliding transitional phase. Flapping preceded flying.

Along the same lines
Hone and Benton (2007, 2008); and Nesbitt and Hone (2010a, b) preferred to see things their own way, rather than strict adherence to the data. So, maybe young Elgin was unduly influenced by his professors and mentors.

Elgin introduced us to
Microtuban altivolan, which he described as a non-azhdarchid azhdarchoid. In the large pterosaur tree (LPT, 1189 taxa) Microtuban indeed nests at the base of the azhdarchid clade, arising from certain dorygnathids, a relationship Elgin never tested.

Elgin suggested a possible sexual dimorphism,
“where the pelvic girdle lacks a symphysis and remains open even in large adults is observed within Coloborhynchus robustus.” (Fig. 2) Let’s blame this one partly on his teachers, and partly on sloppiness. The base of the pterosaur pelvis opens and closes in phylogenetic patterns, not gender patterns. That tricked up Bennett, too, and Elgin’s teachers followed Bennett’s mistakes. On the sloppiness point, the open pelvis of C. robustus is missing its ventral and posterior borders, exactly the bones needed to join the ischia together (Fig. 2). It doesn’t look like Elgin was cheating. He must have thought he was not cheating. But he was cheating by changing points of view, changing scales and not adding back missing bone to follow generic patterns. This was all resolved with a little tracing in Adobe Photoshop, the paleontologists’ best friend.

Figure 1. Elgin compared these two Coloborhynchus pelves together, but failed to align them, scale them and add back missing bone.

Figure 2. Elgin compared these two Coloborhynchus pelves together, but failed to align them, scale them and add back missing bone.

Elgin was also tricked by
traditional archosaur patterns and paradigms in ontogeny. He expected sutures to close at adulthood. This tricked up Bennett, too. Instead, since pterosaurs are lepidosaurs, sometimes they do, sometimes they never do, and sometimes they fuse sutures before maturity and reading their final size. It’s all phylogenetic, not ontogenetic with lepidosaurs, including pterosaurs.

Figure 2. Coloborhynchus robustus (bones and outlines from Elgin 2014) compared to C. spielbergi (b&w). Notes added.

Figure 3. Coloborhynchus robustus (bones and outlines from Elgin 2014) compared to C. spielbergi (b&w). Notes added.

Elgin described and did not illustrate the missing wing finger:
“The wing finger phalanges in almost all pterosaurs are similar in form with expanded proximal and distal margins, the shafts of which show various degrees of curvature. Those preserved in SMNK PAL 1133 are not exception and agree well with other descriptions of pterodactyloids.” This description can only be the result of naiveté and inexperience. In reality phalanx proportions change between genera and species. It would have been helpful to see the wing finger of C. robustus since the C. spielbergi wing finger is missing.

Elgin 2014 mistakenly considered

  1. pterosaurs to be archosauromorphs.
  2. anurognathids to be basal pterodactyloids
  3. Darwinopterus to be ‘an animal intermediate’ linking basal to derived pterosaurs

These issues are resolved and settled
here and here when you add more taxa. It’s good for science to be critical. If nothing else this blog will hopefully show all readers that published scientific text and figures can sometimes include errors that can be exposed and corrected by colleagues.

It’s not okay
to disfigure the figures of other workers and then claim that’s the essence of their work (contra Fig. 1). We’ve seen this before with other PhDs.

References
Elgin RA, Hone DWE and Frey E 2011. The extent of the pterosaur flight membrane. Acta Palaeontologica Polonica 56 (1), 2011: 99-111. doi: 10.4202/app.2009.0145
Elgin RA 2014. Palaeobiology, Morphology, and Flight Characteristics of Pterodactyloid Pterosaurs. Innaugural Dissertation. Zur Erlangung der Doktorwürde Fakultät für Chemie und Geowissenschaften Institut für Geowissenschaften Ruprecht-Karls-Universität Heidelberg. Available online  here.
Hone DWE and Benton MJ 2007. An evaluation of the phylogenetic relationships of the pterosaurs to the archosauromorph reptiles. Journal of Systematic Palaeontology 5:465–469.
Hone DWE and Benton MJ 2008. Contrasting supertree and total evidence methods: the origin of the pterosaurs. Zitteliana B28:35–60.
Nesbitt SJ and Hone DWE 2010a. An external mandibular fenestra and other archosauriform character states in basal pterosaurs. Palaeodiversity 3: 225–233
Nesbitt SJ and Hone DWE 2010b. An external mandibular fenestra and other archosauriform character states in basal pterosaurs. Palaeodiversity 3: 225–233

https://pterosaurheresies.wordpress.com/2012/04/13/a-supertree-of-pterosaur-origins-hone-and-benton-2007-2009/

http://www.reptileevolution.com/pterosaur-wings.htm

https://pterosaurheresies.wordpress.com/2011/11/18/did-dimorphodon-have-an-external-mandibular-fenestra/

https://pterosaurheresies.wordpress.com/2013/01/16/a-closer-look-at-the-antorbital-fossa-in-two-pterosaurs-raeticodactylus-and-dimorphodon/

New flightless and giant nyctosaurs: Alcione and Barbaridactylus

Scale bar problems
and a lack of reconstructions in the original paper are issues here.

Longrich, Martill and Andres 2018
bring us news of “a diverse pterosaur assemblage from the late Maastrichtian of Morocco that includes not only Azhdarchidae but the youngest known Pteranodontidae and Nyctosauridae. [This] dramatically increases the diversity of Maastrichtian pterosaurs. At least 3 families —Pteranodontidae, Nyctosauridae, and Azhdarchidae — persisted into the late Maastrichtian. These patterns suggest an abrupt mass extinction of pterosaurs at the K-Pg boundary.”

The authors summary starts off with an invalid statement:
“Pterosaurs were winged cousins of the dinosaurs.”  That was invalidated by Peters 2000, 2007 and ignored every since. We looked at that problem earlier here, here and here in a 3-part series testing all candidates. It’s time to realize that no one will ever find pterosaur kin among the dinos. They’ve already been clearly identified among the lepidosaurs.

The authors failed to include the Maastrictian tupuxuarid
found in southern Texas (Fig. 1; TMM 42489-2) and did not consider the Maastrichtian footprints discovered in 1954 and reexamined in 2018 that include two ctenochasmatids we will look at tomorrow.

TMM 42489-2, the tall crested Latest Cretaceous large rostrum and mandible. It's a close match to that of Tupuxuara, otherwise known only from Early Cretaceous South American strata.

Figure 1. TMM 42489-2, the tall crested Latest Cretaceous large rostrum and mandible. It’s a close match to that of Tupuxuara, otherwise known only from Early Cretaceous South American strata.

Alcione elainus gen. et sp. nov.
The new 1.5x larger nyctosaurid, Alcione elainus, known from disassociated bones including a shorter radius + ulna, a shorter metacarpal 4, a larger femur, and a tiny sternal complex (identified as a ‘sternum’ in the text) only 40 percent the size of a standard nyctosaur sternal complex (if the scale bars are correct). When placed on a reconstruction of a more complete Nyctosaurus (UNSM 93000; Fig. 2), scaled to the humerus, the result produces a likely flightless nyctosaur. Strangely, the authors called this a “small nyctosaur” even though it is half again larger than UNSM 93000. The authors mislabeled the shorter, straighter scapula as a coracoid, and vice versa.

Figure 2. GIF movie of Nyctosaurus and Alcione showing a likely flightless nyctosaur based on the parts preserved.

Figure 2. GIF movie of Nyctosaurus and Alcione showing a likely flightless nyctosaur based on the parts preserved. Three frames change every 5 seconds. The sternum is tiny (assuming the scale bars are correct), the metacarpus and antebrachium are short and the femur is long.

They did not mention the possibility of flightlessness.
They did report, “The abbreviated distal wing elements in Alcione indicate a specialized flight style. The short, robust proportions suggest reduced wingspan and increased wing loading, implying distinct flight mechanics and an ecological shift. Short wings would increase lift-induced drag at low speeds, but reduced wing areas would decrease parasite drag at high speeds, suggesting that Alcione may have been adapted for relatively fast flapping flight compared to other nyctosaurids. Alternatively, reductions in wingspan might represent an adaptation to underwater feeding, i.e., plunge diving of the sort practiced by gannets, tropicbirds, and kingfishers, where smaller wings would reduce drag underwater.”

Not sure why they mentioned
‘distal wing elements’ here. They did not list or discuss distal wing elements elsewhere. Perhaps they meant proximal.

The reconstructed mandible of Alcione
is narrower than the rostrum in UNSM 93000.

Based on the vestigial fingers of UNSM 93000
and the short metacarpus of the new specimen, Alcione might have been the first pterosaur to walk on metacarpal 4, albeit at the very end of the reign of pterosaurs.

Other flightless pterosaurs include:
the basal azhdarchid form the Solnhofen, Jme-Sos 2428 and the Late Jurassic anurognathid PIN 2585/4 from the Sordes slab. They demonstrate that the distal wing elements reduce first. Thus the reconstruction, based on nyctosaur patterns restores a wing that was not volant.

Longrich, Martill and Andres did find a giant nyctosaur
which they named Barbaridactylus grandis based on a large humerus (Fig. 3). The humerus of the more complete UNSM 93000 specimen is 9.5 cm. By comparison the humerus in Barbaridactylus is 22.5 cm. I’m going to trust the text comment that the ulna + radius are 1.3x longer than the humerus. The scale bars indicate about half that length. Similar problem possible in the scapula/coracoid, according to the nyctosaur bauplan.

Figure 3. Barbaridactylus, a giant nyctosaurid. If the wing was like UNSM 93000, then it could fly. If the wing was like Alcione, then it could not. The scale bars did not match the text description on the ulna + radius, so both sizes are shown.

Figure 3. Barbaridactylus, a giant nyctosaurid. If the wing was like UNSM 93000, then it could fly. If the wing was like Alcione, then it could not. The scale bars did not match the text description on the ulna + radius, so both sizes are shown. Sometimes you have to be prepared for the occasional mistake in a published paper.

Other giant nyctosaurs
Earlier and here we noted giant nyctosaurs were flying over the Niobrara Sea (midwest North America) based on a large wing finger with unfused extensor tendon process (YPM 2501) and a large nyctosaur pelvis (KUVP 993; misinterpreted by Bennett (1991, 1992) as belonging to a female Pteranodon). 

No reconstructions were provided
by Longrich, Martill and Andres 2018. Reconstructions and a nyctosaur blueprint might have helped these paleontologists with firsthand access to the specimens discover the issues they missed.

It’s good to know
more pterosaurs made it to the latest Cretaceous.

References
Bennett SC 1991. Morphology of the Late Cretaceous Pterosaur Pteranodon and Systematics of the Pterodactyloidea. [Volumes I & II]. Ph.D. thesis, University of Kansas, University Microfilms International/ProQuest.
Bennett SC 1992.
 Sexual dimorphism of Pteranodon and other pterosaurs, with comments on cranial crests. Journal of Vertebrate Paleontology 12: 422–434.
Longrich NR, Martill DM, Andres B 2018.
Late Maastrichtian pterosaurs from North Africa and mass extinction of Pterosauria at the Cretaceous-Paleogene boundary. PLoS Biol 16(3): e2001663. https://doi.org/10.1371/journal.pbio.2001663
Peters D 2000b. A Redescription of Four Prolacertiform Genera and Implications for Pterosaur Phylogenesis. Rivista Italiana di Paleontologia e Stratigrafia 106 (3): 293–336.
Peters D 2007. 
The origin and radiation of the Pterosauria. In D. Hone ed. Flugsaurier. The Wellnhofer pterosaur meeting, 2007, Munich, Germany. p. 27.

Press coverage
Smithsonian
Newswise
PhysOrg

Eudimorphodon skull reconstructed

Figure 1. Eudimorphodon ranzii nests at the base of all non-dimorphodontid pterosaurs. Here bones are colorized using DGS and reconstructed below in several views. I can't identify all the bones here, just the easy ones. Red spot in orbit is the rotated pterygoid with teeth. Other pterosaurs don't have such teeth, but then other pterosaurs don't have such marginal teeth either. Line art from F. Dalla Vecchia.

Figure 1. Eudimorphodon ranzii nests at the base of all non-dimorphodontid pterosaurs. Here bones are colorized using DGS and reconstructed below in several views. I can’t identify all the bones here, just the easy ones. Red spot in orbit is the rotated pterygoid with teeth. Other pterosaurs don’t have such teeth, but then other pterosaurs don’t have such marginal teeth either. Line art from F. Dalla Vecchia.

This is Eudimorphodon (Late Triassic), the basalmost of all the non-dimorphodontid pterosaurs. The in situ skull is crushed (Fig. 1), so if you want to see what it looks like in three views you take the parts and put the model back together.

Figure 4. Lateral, dorsal and cross-sectional views of Eudimorphodon ranzii. Note the overlap of the posterior ribs over the hind limbs and the very wide torso. The cross section shows the 2nd dorsal ribs and the 23rd. Note the small ischium which could only produce small eggs. A little taller and wider than we thought before. The forelimbs are pretty short relative to the torso.

Figure 2. Lateral, dorsal and cross-sectional views of Eudimorphodon ranzii. Note the overlap of the posterior ribs over the hind limbs and the very wide torso. The cross section shows the 2nd dorsal ribs and the 23rd. Note the small ischium which could only produce small eggs. A little taller and wider than we thought before. The forelimbs are pretty short relative to the torso.

Eudimorphodon-pterygoid-teeth588.jpg

Close up of Eudimorphodon jugal and pterygoid (yellow) from an old photocopy from back in the day. 

We looked at
the post-cranium of Eudimorphodon earlier here. The torso is weirdly flattened, like that of Sharovipteryx, making the entire body a wing shape.

Figure 3. Sharovipteryx reconstructed. Note the flattened torso.

Figure 3. Sharovipteryx reconstructed. Note the flattened torso.

References
Wild R 1978. Die Flugsaurier (Reptilia, Pterosauria) aus der Oberen Trias von Cene bei Bergamo, Italien. Bolletino della Societa Paleontologica Italiana 17(2): 176–256.
Zambelli R 1973. Eudimorphodon ranzii gen.nov., sp.nov. Uno Pterosauro Triassico. Rendiconti Instituto Lombardo Accademia, (rend. sc.) 107: 27-32.

wiki/Eudimorphodon

 

Misinformation on the palate of Kunpengopterus

Cheng et al. 2017 present
a new complete but slightly damaged specimen of Kunpengopterus, IVPP V 23674.

The new Kunpegnopterus IVPP V 23674.

The new Kunpegnopterus IVPP V 23674.

Cheng et al. provided a new palate reconstruction
that could use a little DGS to better inform the reader and the the authors (Fig. 2, 3). Cheng et al. think they have found some new medial projections toward the back of the palate. Actually they are looking at broken off lateral pieces of the ecto-palatine (ectopterygoid fused to palatine).

Fig. 2. The skull of IVPP V 23674 colorized using DGS alongside the original description.

Fig. 2. The skull of IVPP V 23674 colorized using DGS alongside the original description.

And
here’s a closeup of the palate in dorsal view (Fig. 3). They relied on Wellnhofer 1978 for palate identification. That was when the anterior palate was considered the palatine as it seems to be here, but perhaps fused to the maxilla??. That must be the revision shown here based on Kellner 2013, which I have not read. Ever since Peters 2000, by comparison with Macrocnemus (acknowledged in Kellner 2013), and later by Osi et al. 2010, looking at Dorygnathus, the entire pterosaur palatal plate has been considered the maxilla, as it is here using colors (Fig. 3).

Fig. 3 Kunpengopterus IVPP V 23674 palate in dorsal view alongside original interpretation. Watch out for those broken bones. They sometimes end up in places a wee bit from their origins.

Fig. 3 Kunpengopterus IVPP V 23674 palate in dorsal view alongside original interpretation. Watch out for those broken bones. They sometimes end up in places a wee bit from their origins. And don’t you just hate 1 point lines telling you where the bones are? Colors are much more informative!

It’s really tough
when the broken bone appears to follow the contours of the unbroken bones, as they do here (Fig. 3). That’s where it helps to know the pattern of the palate in ALL pterosaurs. So exceptions like this can be reexamined, looking for the cracks that should not be there.

In similar fashion, here’s a pelvis
(Fig. 4) from the same specimen that appeared to Cheng et al to have a really deep pubis when the reality is more mundane.

Figure 4 Kunpengopterus pelvis with DGS colors identifying the anterior ilium detached from the posterior ilium and the false deep pubis.

Figure 4 Kunpengopterus pelvis with DGS colors identifying the anterior ilium detached from the posterior ilium and the false deep pubis. Note the original drawing in figure 1 that extends the pubis too deep by incorporating the inverted prepubis that match the contours of the ischium. 

References
Cheng X, Jiang S-X, Wang X-L, Kellner AWA 2017. New anatomical information of the wukongopterid Kunpengopterus sinensis Wang et al., 2010 based on a new specimen. PeerJ 5:e4102; DOI 10.7717/peerj.4102
Peters D 2000. A Redescription of Four Prolacertiform Genera and Implications for Pterosaur Phylogenesis. Rivista Italiana di Paleontologia e Stratigrafia 106 (3): 293–336.
Osi A, Prondvai E, Frey E and Pohl B 2010. New Interpretation of the Palate of Pterosaurs. The Anatomical Record 293: 243-258.

Dimorphodon revisited

The odd pterosaur, Dimorphodon
was one of the first taxa included in the large reptile tree (LRT, 1132 taxa). Here I revise earlier errors on the BMNH 41212 specimen (Fig. 1), including adding a short tail discovered a few days ago and also adding more dorsal vertebrae.

Figure 1. The three Dimorphodon specimens traced from the fossils.

Figure 1. The three Dimorphodon specimens traced from the fossils.

Here is the in situ fossil with bones colorized (Fig. 2).

Figure 2. The BMNH 4121 fossil of Dimorphodon here colorized using DGS.

Figure 2. The BMNH 4121 fossil of Dimorphodon here colorized using DGS. Colors match the reconstruction, except for the skull.

Earlier the skull was reconstructed. Here it is again (Fig. 3). This was done to show the mandible did not have a fenestra, only a shifted surangular.

The skull of Dimorphodon macronyx.

Figure 3. The skull of Dimorphodon macronyx. Above: in situ. Middle: Restored. Below: Palatal view. Not settled on the depth of the mandible. The long replaceable teeth suggest a deeper mandible is more appropriate.

References
Buckland W 1829. Proceedings of the Geological Society London, 1: 127
Owen R 1859. On a new genus (Dimorphodon) of pterodactyle, with remarks on the geological distribution of flying reptiles.” Rep. Br. Ass. Advmnt Sci., 28 (1858): 97–103.
Nesbitt SJ and Hone DWE 2010. An external mandibular fenestra and other archosauriform character states in basal pterosaurs. Palaeodiversity 3: 225–233
Padian K 1983. Osteology and functional morphology of Dimorphodon macronyx (Buckland) (Pterosauria: Rhamphorhynchoidea) based on new material in the Yale Peabody Museum, Postilla, 189: 1-44.
Sangster S 2001. Anatomy, functional morphology and systematics of Dimorphodon. Strata 11: 87-88

wiki/Dimorphodon