A quick look at the original Tapejara skull

Short one today
told mostly in pictures.

Topic: Simplification. 
Get rid of the extraneous data to better see and understand the basics.

Figure 1. Just take out everything that isn't this side of Tapejara. Rearrange the parts for best fit. Make a guess for the missing parts and this is what you get.

Figure 1. Just take out everything that isn’t this side of Tapejara. Rearrange the parts for best fit. Make a guess for the missing parts and this is what you get.

In this case
the skull of the original Tapejara fossil (Fig. 1) is trimmed back to just the basics and slightly shifted to fit. Missing tips are added based on phylogenetic bracketing.

Figure 4. Click to enlarge. The Tapejaridae arise from dsungaripterids and germanodactylids.

Figure 2. Click to enlarge. Tiny Tapejaridae arise from dsungaripterids and germanodactylids, then grow larger phylogenetically.

Tapejara wellnhoferi
(Kellner 1989; 108 mya, Early Cretaceous) was immediately recognized as something quite different when first discovered. Compared to other specimens, this one appears to have no sharp premaxilla, likely due to taphonomic loss.


References
Eck K, Elgin RA and Frey E 2011. On the osteology of Tapejara wellnhoferi KELLNER 1989 and the first occurrence of a multiple specimen assemblage from the Santana Formation, Araripe Basin, NE-Brazil. Swiss Journal of Palaeontology, doi:10.1007/s13358-011-0024-5.
Kellner AWA 1989. A new edentate pterosaur of the Lower Cretaceous from the Araripe Basin, northeast Brazil. Anais da Academia Brasileira de Ciências 61, 439-446.

wiki/Tapejara

 

Sinopterus? or Huaxiapterus? It gets confusing…

A kind reader alerted me to a misidentification here.
The grayscale image (Fig. x) is the ZMNH M 8131 specimen of Huaxiapterus. When a higher resolution image becomes available I will return to this specimen and edit the copy. With that in mind… here is the original blogpost, awaiting an edit.

Figure x. Huaxiapterus ZMNH-M-8131 specimen.

Figure x. Huaxiapterus ZMNH-M-8131 specimen.

 

Thank goodness
for museum numbers.

Today the ZMNH M 8131 specimen first attributed to
Huaxiapterus corollatus (Lü et al. 2006) then renamed Sinopterus corollatus (Zhang et al. 2019; Figs. 1, 2) enters the the large pterosaur tree (LPT, 255 taxa) basal to tapejarids, derived from the Sinopterus atavismus specimen nesting basal to dsungaripterids.

Figure 1. Huaxiapterus corollatus ZMNH M 8131 reconstructed. An alternate m4.1 is provided that looks more like a m4.1 than a metacarpal 4.

Figure 1. Huaxiapterus corollatus ZMNH M 8131 reconstructed. An alternate m4.1 is provided that looks more like a m4.1 than a metacarpal 4.

Sometimes specimens are reassembled slightly wrong.
In this case several long bones were accidentally reversed end-to-end in this otherwise stunning mount. One never knows what the original fossil looked like prior to reassembly. We don’t want to call these ‘fakes’. We do want to be aware of errors and artistic reconstructions as much as is possible.

Figure 2. The ZMNH specimen in situ and somewhat corrected for original perspective issues. The correction makes the wings the same length.

Figure 2. The ZMNH specimen in situ and somewhat corrected for original perspective issues. The correction makes the wings the same length. Be wary of such wonderful-looking fossils. This specimen appears to have been reassembled. Some long bones are reversed end-to-end, which do not affect scoring.

Sinopterus – Huaxiapterus corollatus (Lü et al. 2006; Early Cretaceous, ZMNH M 8131) is another largely complete specimen with confusing nomenclature. This taxon nests at the base of the Tapejara, basal to the Aathal specimen (below). The pelvis is missing. The sternum is among the largest of all pterosaurs. The cervicals are longer creating a taller pterosaur.

From the Lü et al. abstract:
“A new species of tapejarid pterosaur, Huaxiapterus corollatus sp. nov. is erected on the basis of a nearly complete skull and postcranial skeleton from the Lower Cretaceous Jiufotang Formation of Liaoning Province, China. Huaxiapterus corollatus sp. nov. is characterized by a hatchet-shaped rectangular process on the premaxilla, whose short axis is perpendicular to the anterior margin of the premaxillae. Except for this process, other characters of the skull such as the breadth of the snout between the anterior margin of the nasoantorbital fenestra and the anterior margin of the premaxilla are similar to that of Huaxiapterus jii.”

Figure 3. Huaxiaptrus iii and Huaxiapterus corollatus to scale. These two do not nest next to one another in the LPT.

Figure 3. Huaxiaptrus iii and Huaxiapterus corollatus to scale. These two do not nest next to one another in the LPT.

The Lü et al. abstract continues
“Huaxiapterus and a second Chinese tapejarid, Sinopterus, share several unique cranial characters in common with Tapejara and these three genera appear to be more closely related to each other than to other azhdarchoids.

In the LPT azhdarchids nest with dorygnathids, not tapejarids. Adding these taxa missing from prior studies makes this inevitable.

“The Chinese tapejarids (Sinopterus and Huaxiapterus) have relatively elongate skulls and weakly developed cranial crests and seem to be less derived than Tapejara, with its shorter, deeper skull and large cranial crest. Tupuxuarids (Tupuxuara and Thalassodromeus) have often been associated with tapejarids in the family Tapejaridae, but this relationship is controversial because some phylogenetic analyses have supported the pairing of tupuxuarids with Azhdarchidae.”

Adding taxa moves Azhdarchidae away from tupuxuarids.

Figure 4. Tapejaridae in the LPT.

“We propose that Tapejaridae be restricted to Tapejara, Sinopterus and Huaxiapterus.”

The LPT does not support that proposal (Fig. 4). The Tapejaridae remains a monophyletic clade in the LPT derived from dsungaripterids, shenzhoupterids and earlier, germanodactylids… not azhdarchids.


References
Lü JC, Jin XS, Unwin DM, Zhao LJ, Azuma Y and Ji Q 2006. A new species of Huaxiapterus Pterosauria: Pterodactyloidea from the Lower Cretaceous of western
Liaoning, China with comments on the system atics of tapejarid pterosaurs. Acta Geol Sinica English 80: 315-326.
Zhang X, Jiang S, Cheng X and Wang X 2019. New material of Sinopterus (Pterosauria, Tapejaridae) from the Early Cretaceous Jehol Biota of China. Anais da Academia Brasileira de Ciencias 91(2):e20180756. DOI 10.1590/0001-3765201920180756.

wiki/Sinopterus
wiki/Huaxiapterus
reptileevolution.com/tapejaridae.htm

SVP abstracts 26: Pterosaur fibers or lack thereof, again

Unwin and Martill 2020
published on this abstract earlier last year and this year (2020).

“Fiber-like structures are frequently preserved in association with fossilized remains of the pterosaur integument. Several fiber types have been recognized. Among the commonest are aktinofibrils, typically 40–100+ μm in breadth and present throughout the flight patagia, exhibiting the same patterns of alignment across Pterosauria.

“Occasionally partially mineralized in distal regions of the patagia, aktinofibrils were composite, helically-wound structures composed of much finer filaments a few microns in diameter.

“Comparable in size to aktinofibrils, but less common, are single-stranded, hair-like pycnofibers, seemingly branched in two specimens of the anurognathid Jeholopterus, that supposedly adorned parts of the cranium, neck, and body. Fiber-like structures have also been reported in cranial crests, foot webs, and tail flaps. The identity, homology, composition, and function of integumentary fibers is fiercely disputed.”

‘Fiercely’? Hyperbole. This issue was just raised by Unwin and Martill and I have yet to see their evidence. Here’s the evidence for pycnofibers on the fluffiest pterosaur of all, the owl-like holotype of Jeholopterus (Fig. 1) and a reconstruction of same (Fig. 2).

Figure 2. Wing and other extra dermal membranes surrounding Jeholopterus.

Figure 1. Wing and other extra dermal membranes surrounding Jeholopterus.

Figure 4. Jeholopterus in dorsal view. Here the robust hind limbs, broad belly and small skull stand out as distinct from other anurognathids. Click to enlarge.

Figure 2. Jeholopterus in dorsal view. Here the robust hind limbs, broad belly and small skull stand out as distinct from other anurognathids. Click to enlarge.

Unwin and Martill 2020 abstract continues:
“This study aimed to resolve these issues through analysis of 150+ specimens where the integument is preserved, representing >25% of known pterosaur species, 15 of the 20 principal lineages, and almost the entire temporal range of the clade. Details of the macro- and microstructure of fibers was obtained using light, UV and laser-UV photography, and binocular and scanning electron microscopy.”

Missing from their taxon list are any outgroups of the Pterosauria (Cosesaurus, Sharovipteryx and Longisquama, Fig. 3), all of which also have extradermal membranes and fibers, some of which form precursor wing fibers (Peters 2009).

Longisquama in situ. See if you can find the sternal complex, scapula and coracoid before looking at figure 2 where they are highlighted.

Figure 3. Longisquama in situ. See if you can find the sternal complex, scapula and coracoid before looking at figure 2 where they are highlighted.

Unwin and Martill 2020 abstract continues:
“Results of this study provide broad support for a new model in which pterosaur integumentary fibers of all types had a single common origin: dermal collagen. This idea is consistent with:

  1. exceptionally preserved examples of cranial crests, wing membranes, and integument associated with the neck and body, which demonstrate that fibers were embedded within the integument, and formed part of the dermis;
  2. calcification of fibers in the cranial crest and, occasionally, in distal parts of the flight patagia;
  3. the composite construction of fibers, which were composed of much finer, helically-wound fibrils.

There’s no argument there. Nothing fiercely disputed. Everyone agrees.

“Multiple specimens with soft tissues preserved in four different preservational modes, show that the integument had a glabrous, fine granular, or even polygonal external texture. Aktinofibrils and other collagenous dermal fibres (e.g., in cranial crests and skin associated with the neck and body) exposed by decay of the remarkably thin epidermis have frequently been misinterpreted as pycnofibers.”

The word ‘misinterpreted’ here should have been the leading sentence followed by evidence. Not the penultimate one followed by no evidence. Unwin and Martill should have taken the strongest evidence against their hypothesis and knocked it down with evidence. They had the opportunity, and they were paid to do this, but failed to do their job.

Figure 2. Here is the Vienna specimen of Pterodactylus in situ and with matrix removed. Now compare this figure with figure 3, which shows the wings and uropatagia unfolding. There is no way to turn this into a deep chord wing membrane. And it decouples the forelimbs from the hind limbs.

Figure 4. Here is the Vienna specimen of Pterodactylus in situ and with matrix removed. Where are the pycnofibers here? I see skin, but no fibers. Then again, the fluffiness of Jeholopterus gave it owl-like silent flight characteristics not needed in a beach combing wader.

Unwin and Martill 2020 abstract continues:
“External fibers fringing the jaws of anurognathids may be an exception, although branching, reported in one specimen, is likely an artifact of preservation.”

Only this one extremely minor exception? Let’s talk about the other major exceptions (Figs. 1, 2). And let’s talk about the lack of similar fibers on wading pterosaurs like Pterodactylus (Fig. 4). The fact that Unwin and Martill got the wing membranes wrong and continue to deny the lepidosaur ancestry of pterosaurs lead one to distrust and discredit everything else they say (= invalid phylogenetic context). And that’s something that should never happen to a couple of pterosaur experts.


References
Peters D 2009. A reinterpretation of pteroid articulation in pterosaurs. Journal of Vertebrate Paleontology 29: 1327-1330
Unwin D and Martill D 2019. When the Mesozoic got ugly – naked, hairless, (and featherless) pterosaurs. SVPCA abstracts.
Unwin D and Martill D 2020. Identity, homology, and composition of fiber-like structures associated with the pterosaur integument. SVP abstracts 2020.

https://pterosaurheresies.wordpress.com/2019/10/02/unwin-and-martill-2019-find-pterosaurs-naked-and-ugly/

https://pterosaurheresies.wordpress.com/2020/09/30/naked-pterosaurs-or-feathered-phds-clash/

SVP abstracts 10: Scottish Middle Jurassic pterosaur, back again this year

Revised November 4, 2020
with the news that two Skye pterosaurs have been presented in SVP abstracts, not the one I assumed. Neither has been published yet, so I don’t know if the accompanying illustrations represent one or the other.

This is the second time
the wonderful Skye, Scotland pterosaur has entered the SVP abstracts. The first was in 2019, covered here. Evidently, this specimen is still unnamed and unnumbered, so I wondered, what progress does the new set of authors bring to this specimen this year?

Figure 1. Skye pterosaur from traced from in situ specimens found online.

Figure 1. Skye pterosaur from traced from in situ specimens found online.

From the Jagielska et al. 2020 abstract:
“An incomplete fossil record limits understanding of pterosaurian macroevolution during the Middle Jurassic, a period associated with diversification of many major pterosaur clades.”

By contrast, the fossil record in the large pterosaur tree (LPT, 251 taxa) has no large gaps during the Middle Jurassic (Fig. 2) or otherwise. The fossil record is more complete than the authors realize, evidently due to taxon exclusion.

“The European Middle Jurassic pterosaurian record, until now, has consisted of numerous non-taxon specific specimens and included a single named genus, based on a partially preserved dentary.”

Are we forgetting all the many Dorygnathus specimens (Fig. 2)? Several are transitional to higher pterodactyloid-grade taxa, either directly (ctenochasmatids and azhdarchids) or indirectly through Scaphognathus (the rest of them; Peters 2007).

Figure 8. Click to enlarge. The descendants of Sordes in the Dorygnathus clade and their two clades of pterodactyloid-grade descendants.

Figure 2. Click to enlarge. The descendants of Sordes in the Dorygnathus clade and their two clades of pterodactyloid-grade descendants.

Continuing from the Jagielska et al. 2020 abstract:
“Here we describe a new three-dimensionally preserved partial skeleton from the Bathonian Lealt Shale Formation of Skye, Scotland, that helps fill the Middle Jurassic pterosaur gap. It is the most complete fossil from the Jurassic sequence of the Scottish Hebrides, which commonly yields ichnofossils but only fragmentary archosaur remains, and the first nearly complete Middle Jurassic pterosaur from outside of China. The new pterosaur is mostly articulated and includes the skull (which retains delicate palatal, hyoid, and neurocranial elements), complete cervical and caudal vertebral series, fully preserved paired forelimbs with partially preserved wing phalanges, a disarticulated dorsal vertebral series and ribcage, and a poorly preserved sacral, pelvis and hindlimb region. It is the largest non-pterodactyloid on record, with an estimated 2 m wide wingspan.”

We also heard this in 2019. Since the authors have changed, perhaps no one told Jagielska et al. that this specimen was featured in an SVP abstract a year ago.

“The specimen represents a new genus and species diagnosed by several autapomorphies, including slender, curved humeral shaft; large teardrop-shaped lower temporal fenestra; a novel “jugo-lacrimal” fossa, and unique palatal arrangement with trident-shaped anterior vomer.”

As Larry Martin was quick to note, most autapomorphies can be found in other tetrapod taxa by convergence. So first, run the analysis. Then start describing some interesting traits.

“We conducted a phylogenetic analysis by combining several published datasets, which placed the new Scottish pterosaur within the paraphyletic array of non-monofenestratans commonly called the Rhamphorhynchinae, where it shares cranial similarities to the similarly-aged Chinese Angustinaripterus longicephalus.”

Sometimes more data nests taxa elsewhere, but their ‘several published datasets’ don’t include the LPT (subset Fig. 3). Borrowing other datasets usually absolves authors from mistakes made by prior authors, especially taxon exclusion issues. Colleagues, students: create your own datasets. Create your own reconstructions. By the way, in 2019 the earlier set of authors nested the Skye pterosaur with Darwinopterus and Wukongopterus, far from Angustinaripterus. The LRT nests the Skye pterosaur basal to the clade of wukongopterids (Fig. 3).

“We imaged the skull using microCT, which reveals a brain endocast with a large cerebellum and floccular region wrapped by thin, curved semi-circular canals of the inner ear, similar to closely related Rhamphorhynchus muensteri.”

The 2019 abstract likewise mentioned µCT scans. None of the above taxa are closely related to R. muensteri.

Figure 3. Subset of the LPT showing the nesting of the Skye pterosaur from available data (Fig. 1).

Figure 3. Subset of the LPT showing the nesting of the Skye pterosaur from available data (Fig. 1).

Continuing from the Jagielska et al. 2020 abstract:
“Along with the highly diverse but fragmentary Tayton Limestone Formation assemblage of England, the new specimen challenges the long-considered notion that the European Middle Jurassic was a time of low pterosaur diversity and anatomical disparity.”

One more specimen that we knew about last year will not challenge a ‘long considered notion’ that was never a notion to begin with. Hate to be snippy here, but hyperbole is not appropriate in science simply to elevate a notion or a cladogram, especially if it lacks dozens of pertinent taxa.


References
Jagielska N et al. (9 co-authors) 2020. An exceptionally well preserved pterosaur from the Middle Jurassic of Scotland. SVP abstracts 2020.
Martin-Silverstone E, Unwin DM and Barrett PM  2019. A new, three-dimensionally preserved monofenestratan pterosaur form the Middle Jurassic of Scotland and the complex evolutionary history of the scapulo-vertebrael articulation. SVP abstracts 2019. Peters D 2007. The origin and radiation of the Pterosauria. In D. Hone ed. Flugsaurier. The Wellnhofer pterosaur meeting, 2007, Munich, Germany. p. 27.

https://pterosaurheresies.wordpress.com/2019/11/01/svp-abstracts-the-skye-pterosaur/

SDUST-V1003 is not Forfexopterus

Zhou, Wang and Zhou 2020 describe a new pterosaur specimen
based on a single articulated wing (SDUST-V1003; (Fig. 1), which they assigned to Forfexopterus (Fig. 2)… with this odd reservation: “It is only about 75% the size of the immature holotype.”

By contrast
in the large pterosaur tree (LPT, 251 taxa) the SDUST-V1003 (Fig. 1) nests with a slightly earlier and smaller Yixian Formation pre-azhdarchid pterosaur, Beipiaopterus (Fig. 3).

Figure 1. SDUST-V1003, formerly Forfexopterus, in situ and reconstructed.

Figure 1. SDUST-V1003, formerly Forfexopterus, in situ and reconstructed. Note the slender free fingers and giant unguals. The radius was taphonomically displaced. A tiny wing finger claw is present. Metacarpus 4 was split and splintered. perhaps during axial wing rotation during taphonomy.

Zhou, Wang and Zhou 2020 considered the following pterosaurs
ctenochasmatids. Most are not when you add more taxa, as in the LPT.

  1. EosipterusElanodactylus – Germanodactylidae
  2. Feilongus, Pterofiltrus, MoganopterusCycnorhamphidae
  3. Beipiaopterus, Forfexopterus  pre-Azhdarchidae
  4. Gegepterus, Gladocephaloideus – Ctenochasmatidae
  5. Cathayopterusnot tested yet
Figure 2. Forfexopterus compared to sisters Huanhepterus and Ardeadactylus and the BYU specimen of Mesadactylus.

Figure 2. Forfexopterus compared to sisters Huanhepterus and Ardeadactylus and the BYU specimen of Mesadactylus.

The SDUST pterosaur is known from
a slab containing a complete wing (lacking manual 2.2, 2.3, 3.2, 3.3 and 3.4; Fig. 1) with somewhat different proportions than the holoytpe Forfexopterus (Fig 2), The differences turn out to be enough to separate the two in the LPT. The referred specimen (SDUST V1003) nests two nodes apart from Forfexopterus, so the two cannot be congeneric.

Figure 3. Beipiaopterus to scale with the SDUST pterosaur. Beipiaopterus wing enlarged to match the SDUST pterosaur.

Figure 3. Beipiaopterus to scale with the SDUST pterosaur. Beipiaopterus wing enlarged to match the SDUST pterosaur. Note how relatively tiny the free fingers are in these taxa.

From the Zhou, Wang and Zhou abstract:
“In the Jehol Biota, the filter-feeding ctenochasmatid pterosaurs flourished with a high biodiversity. Here, we report a new wing skeleton of the ctenochasmatid Forfexopterus from the Early Cretaceous Jiufotang Formation in Jianchang, western Liaoning, China. The specimen exhibits the sole autapomorphy, the first wing phalanx shorter than the second and longer than the third.”

Other pterosaurs also share this trait. As long-time readers will readily realize, Zhou, Wang and Zhou were “Pulling a Larry Martin” by relying on this single trait, or a dozen traits.

“Interestingly, it exhibits a skeletal maturity with co-ossified elements, but it is only about 75% the size of the immature holotype.”

Here the authors reveal they were misinformed on the subject of pterosaur  phylogeny and ontogeny Pterosaurs are tritosaur lepidosaurs with isometric growth patterns and phylogenetic (not ontogenetic) ossification patterns. Thus for good reason, pterosaurs don’t follow archosaur growth and ossification patterns.

“This discrepancy reveals developmental variation of Forfexopterus, but its relationship with sexual dimorphism needs to be certain by more available material.”

Pterosaurs have not yet shown sexual variation in their skeletons. Not yet.

The holotype Forfexopterus jeholensis
(Jiang et al. 2016; Early Cretaceous; Fig. 2) was originally considered an Archaeopterodactyloid. There is no such valid clade in the LPT. Here Forfexopterus nests with Ardeadactylus and Huanhepterus (Fig. 2) and other tall, slender pterosaurs basal to Azhdarchidae.


References
Jiang S, Cheng X, Ma Y and Wang X 2016. A new archaeopterodactyloid pterosaur from the Jiufotang Formation of western Liaoning, China, with a comparison of sterna in Pterodactylomorpha. Journal of Vertebrate Palaeontology: e1212058.
Zhou C-F, Wang J and Zhou Z 2020. A new wing skeleton of Forfexopterus (Pterosauria: Ctenochasmatidae) from the Early Cretaceous Jehol Biota reveals a developmental variation. Fossil Record 23:191–196,

wiki/Huanhepterus
wiki/Forfexopterus
wiki/Ardeadactylus
wiki/Beipiaopterus

 

Darwin’s finches: Mesozoic style

Originally ‘Darwin’s finches’ =
small birds from the Galápagos Islands west of Ecuador, in the Pacific Ocean.

According to Wikipedia:
The term “Darwin’s finches” was first applied by Percy Lowe in 1936, and popularised in 1947 by David Lack in his book Darwin’s Finches. The most important differences between species are in the size and shape of their beaks, which are highly adapted to different food sources.”

For today’s post, metaphorically speaking, ‘Darwin’s finches’ =
“several variations on a last common ancestor restricted to a small geographic area.”

Similar Mesozoic variations
on a last common ancestor restricted to a small geographic area are also documented in the large reptile tree (LRT) and the large pterosaur tree (LPT). Here (Figs. 1–8), other than Late Cretaceous Pteranodon (Fig. 1), and Middle Jurassic Darwinopterus (Fig. 8), the others (Figs. 2–7), are all known from the Late Jurassic Solnhofen Formation, a lagerstätte representing an archipelago or series of islands, much like today’s Galápagos Islands.

Here
(Figs. 1–8) pictures of closely related taxa tell the story of their own evolution much better than any long-winded explanation. No two are alike. Arrows indicate phylogenetic order.

If you want to know more,
click on each of the images below. When taken to the large image pages at ReptileEvolution.com a small link at the top of each page will take you to one of the species pictured therein. Other links to related taxa are posted on each species’ page.

Pteranodon

Figure 2. The DMNH specimen is in color, nesting between the short crest KS specimen and the long crest AMNH specimen.

Figure 1. The DMNH specimen is in color, nesting between the short crest KS specimen and the long crest AMNH specimen. If you see a female in this diagram, let me know. No two are alike.

Rhamphorhynchus

Figure 2. Rhamphorhynchus specimens to scale. The Lauer Collection specimen would precede the Limhoff specimen on the second row.

Figure 2. Rhamphorhynchus specimens to scale. The Lauer Collection specimen would precede the Limhoff specimen on the second row. No two are alike, but the Vienna specimen is a juvenile of the larger n81 specimen to its right.

Dorygnathus

Figure 8. Click to enlarge. The descendants of Sordes in the Dorygnathus clade and their two clades of pterodactyloid-grade descendants.

Figure 3. Click to enlarge. The descendants of Sordes in the Dorygnathus clade and their two clades of pterodactyloid-grade descendants. No two are alike.

Germanodactylus

Germanodactylus and kin

Figure 4. Click to enlarge. Germanodactylus and kin. No two are alike.

Pterodactylus

The Pterodactylus lineage and mislabeled specimens formerly attributed to this "wastebasket" genus

Figure 5. Click to enlarge. The Pterodactylus lineage (in white) and mislabeled specimens formerly attributed to this “wastebasket” genus (in color boxes). No two are alike.

Scaphognathus

Figure 1. Scaphognathians to scale. Click to enlarge.

Figure 6. Click to enlarge. Only the left three taxa have been identified as Scaphognathus species. Other tiny unnamed specimens are transitional taxa to Pterodactylus or Germanodactylus leading to larger, later taxa. No two are alike.

Archaeopteryx (some of these Solnhofen birds have been renamed)

Figure 3. Several Solnhofen birds, including Archaeopteryx, compared to Ostromia to scale.

Figure 7. Several Solnhofen birds, including Archaeopteryx, compared to Ostromia to scale. No two are alike.

Darwinopterus

Figure 7. Darwinopterus specimens and a few outgroup taxa.

Figure 8. Darwinopterus specimens and a few outgroup taxa. None of these are basal to any pterodactyloid-grade clades. No two are alike. The female (upper right) is associates with an egg.

Unfortunately,
PhDs and other paleo workers who traditionally refuse to trace and reconstruct ‘to scale’ skeletons of taxa under study never get to discover results like these that are only revealed from producing ‘to scale’ graphics like these (Figs. 1–8). Subtleties come through here, en masse, that are lost when looking at individual skeletons in situ one at a time, especially through a microscope, where you don’t get to see ‘the big picture’. Some workers consider such graphics pseudoscience and crankery.

As a result, no other workers
understand or accept the four origins of the pterodactyloid grade arising from phylogenetic miniaturized transitional taxa (Figs. 3, 6) because they omit pertinent tiny and congeneric taxa. Likewise, workers do not yet understand nor accept the radiation of several bird clades having their genesis in Solnhofen basalmost birds. Workers don’t see ‘the big picture’ because of these taxon exclusions.

Rather, too many workers
try to compile a list of specific traits that differentiate one taxon from another. Here we call that, “Pulling a Larry Martin” because it only sometimes leads to greater understanding. The problem is unrelated taxa too often share those same traits by convergence. Here, reconstructions and a confident nesting in the LRT automatically encompass and include ALL the subtle irregularities between taxa that ‘trait seekers’ traditionally overlook.

References

wiki/Darwin’s_finches

The rest of Lonchodraco probably looks like this large unnamed ornithocheird

Only the deep toothy jaw tips,
of the pterosaur Lonchodraco giganteus (Hooley 1914; Rodrigues & Kellner 2013; NHMUK PV 39412; originally Pterodactylus giganteus Bowerbank 1846; Fig. 1) are known. Ever wonder what the rest of this pterosaur looked like?

Well,
the 174-year wait is over.

Figure 1. Lonchodraco jaw tips. Colors added here.

Figure 1. Lonchodraco jaw tips. Colors added here. For the rest of this genus, see figure 2. The nasal (pink) is laminated between the premaxilla (yellow) and maxilla (green). The jugal (blue) also makes an appearance.

What little is known of Lonchodectes turns out to look like
the (so far) unnamed large ornithocheirid, SMNK PAL 1136 (Fig. 2) one of the largest of all flying pterosaurs. The very few parts they have in common are virtually identical, except for size (note the scale bars provided).

Figure 2. The unnamed giant ornithocheirid, SMNK PAL 1136 has a rostrum quite similar to that of Lonchodectes.

Figure 2. The unnamed giant ornithocheirid, SMNK PAL 1136 has a rostrum quite similar to that of Lonchodectes. With such giant wings, soaring over wave tops would have been ideal, dipping occasionally to feed without getting wet.


As one of the largest flying pterosaurs,

SMNK PAL 1136 (Figs. 2, 3) presents no vestigial terminal wing phalanges. No hyper-elongated neck cervicals are present. This pterosaur was built to soar like a big pelican.

Sorry, giant azhdarchids lovers 
(Fig. 3). Those were not volant, as we learned earlier here. They grew to be so big AFTER they became flightless, like flightless birds do. Giant azhdarchids DO have vestigial wing phalanges and a hyper-elongated neck.

Figure 1. Click to enlarge. The largest flying and non-flying birds and pterosaurs to scale.

Figure 3. Click to enlarge. The largest flying and non-flying birds and pterosaurs to scale.

Earlier workers 
did not match Lonchodraco to the SMNK PAL 1136 specimen. Earlier workers did not name the SMNK specimen. Perhaps someone is working on that specimen at present and other workers are giving him/her the honor/duty of naming it.

Wonder if
the Lonchodraco name will stick to the SMNK specimen?

Recently, Martill et al. 2020 took a close look
at the foramina in the jaw tips of Lonchodraco and thought they indicated enhanced sensitivity of the rostrum tip, which implied tactile feeding. With such giant wings, soaring over wave tops would have been likely, dipping occasionally to feed without getting the wings wet.

Odd that the top workers at the top universities
have decided to spend their time examining tiny pits on a broken 174-year-old pterosaur snout while ignoring the origin of pterosaurs… while ignoring many dozen complete pterosaurs that should be in phylogenetic analysis… while ignoring the lepidosaurs that gave rise to the ancestors of pterosaurs. Unfortunately, that’s the world academics live in today. They keep trying to not upset the lectures and textbooks from which they make their living. Apparently if academics focus on the details they won’t have to worry about the big picture. No one will ever know the difference if no one points out the elephant in the room.


References
Averianov AO 2020. Taxonomy of the Lonchodectidae (Pterosauria, Pterodactyloidea). Proceedings of the Zoological Institute RAS. 324 (1): 41–55. doi:10.31610/trudyzin/2020.324.1.41
Bowerbank JS 1846. On a new species of pterodactyl found in the Upper Chalk of Kent (Pterodactylus giganteus). Quarterly Journal of the Geological Society of London. 2: 7–9.
Bowerbank JS 1848. Microscopical observations on the structure of the bones of Pterodactylus giganteus and other fossil animals”. Quarterly Journal of the Geological Society. 4: 2–10.
Martill DM, Smith RE, Longrich N and Brown J 2020. Evidence for tactile feeding in pterosaurs: a sensitive tip to the beak of Lonchodraco giganteus (Pterosauria, Lonchodectidae) from the Upper Cretaceous of southern England. Cretaceous Research
Available online 3 September 2020, 104637 Cretaceous Research https://doi.org/10.1016/j.cretres.2020.104637
Rodrigues T and Kellner A 2013. Taxonomic review of the Ornithocheirus complex (Pterosauria) from the Cretaceous of England. ZooKeys. 308: 1–112. doi:10.3897/zookeys.308.5559

wiki/Lonchodraco

Pterodactylus antiquus extreme closeups: Tischlinger 2020

Paleo-photographer Helmut Tischlinger 2020
brings us extreme closeups of the first pterosaur ever described, Pterodactylus antiquus (Figs 1–7), in white and UV light. Here both photos of the same area are layered precisely to demonstrate the different details each type of light brings out.

The text is German.
The abstract and photo captions are duplicated in English.

Pterodactylus antiquus (Collini 1784, Cuvier 1801, 1809, Sömmerring 1812, BSP Nr. AS I 739No. 4 of Wellnhofer 1970; Late Jurassic) was the first pterosaur to be described and named.

Figure 1. Reconstruction of Pterodactylus antiquus made prior to Tischlinger 2020.

Figure 1. Reconstruction of Pterodactylus antiquus made prior to Tischlinger 2020.

From the Abstract:
“On the occasion of the reopening of the Jura Museum Eichstätt on January 9, 2020, the Bavarian State Collection for Paleontology and Geology, Munich, provided the Jura Museum with one of its most valuable fossil treasures as a temporary loan. The “Collini specimen”, first described in 1784, is the first scientifically examined and published fossil of a pterosaur and has been at the center of interest of many natural scientists since it became known… An examination of the texture of the surface of the limestone slab and the dendrites on it suggests that it does not come from Eichstätt, as has been claimed by Collini, but most likely from the Zandt-Breitenhill quarry area about 30 km east of Eichstätt. For the first time, a detailed investigation and pictorial documentation were carried out under ultraviolet light, which on the one hand document the excellent preservation of the fossil, and on the other hand show that there has obviously been no damage or manipulation to this icon of pterosaurology during the past almost 240 years.”

Figure 2. Pterodactylus wing ungual.

Figure 2. Pterodactylus wing ungual in white light and UV. Not sure why the two images are not identical, but elsewhere teeth appear and disappear depending on the type of light used.

The wing tip ungual 
appears to be present in visible light, but changes to a blob under UV (Fig. 2). Other pterosaurs likewise retain an often overlooked wingtip ungual.

In the same image
the skin surrounding an oval secondary naris within the anterior antorbital fenestra appears. Otherwise very little soft tissues is preserved.

The ‘secondary naris’ may be a new concept for some,
so it is explained below. This is not the same concept as the hypothetical ‘confluent naris + antorbital fenestra’ you may have heard about. Remember, ‘pterodactloid’-grade pterosaurs arose 4x by convergence. So each had their own evolutionary path.

Figure 3. Pterodactylus rostrum from Tischlinger 2020, colors added here. Note the original naris appears as a vestige above the maxilla tip, as in the Triassic pterosaur, Bergamodactylus and the Pterodactylus ancestor, Scaphoganthus.

Figure 3. Pterodactylus rostrum from Tischlinger 2020, colors added here. Note the original naris appears as a vestige above the maxilla tip, as in the Triassic pterosaur, Bergamodactylus and the Pterodactylus ancestor, Scaphoganthus. The shape of that narial opening is different in UV and white light.

The elements of the paper-thin rostrum
are colorized here (Fig. 3). There are subtle differences between the white light and UV images. The pink color represents a portion of the nasal that extends to the anterior maxilla and naris as in other pterosaurs and tetrapods. Did I just say naris? Yes.

Note the original naris here appears as a vestige
in its usual place above the maxilla tip, as in the Triassic pterosaur, Bergamodactylus and the late-surviving Pterodactylus ancestor, Scaphoganthus. The transition to this vestigial naris is documented in the rarely published n9 (SoS 4593), n31 (SoS 4006) and SMNS 81775 tiny transitional taxa (Fig. 4). After testing, all these turn out to be miniaturized adults traditionally mistakenly considered to be juveniles, only by those pterosaur workers who have excluded these taxa from phylogenetic analysis.

Figure 2. Click to enlarge. Painten pterosaur compared to phylogenetic sister taxa. Ornithocephalus and SMNS 81775 are the basal taxa here. Note that while everything else grows on derived taxa, the metacarpus stays the same size. The large size of the Painten pterosaur, along with the greater length of pedal digit 3 and the brevity of the metacarpus sets it apart in its own clade, of which this the first known representative. Larger than its relatives, this is an unlikely juvenile (contra Hone, see below).

Figure 4. Click to enlarge. Painten pterosaur compared to phylogenetic sister taxa. Ornithocephalus and SMNS 81775 are the basal taxa here. Note that while everything else grows on derived taxa, the metacarpus stays the same size. The large size of the Painten pterosaur, along with the greater length of pedal digit 3 and the brevity of the metacarpus sets it apart in its own clade, of which this the first known representative. Larger than its relatives, this is an unlikely juvenile (contra Hone, see below).

That’s why it is so important
to include all pterosaurs specimens as taxa in analysis. Otherwise you will miss the phylogenetic miniaturization that occurs at the genesis of major clades, the phylogenetic variation within a genus, and the evolution of new traits that have been overlooked by all other pterosaur workers.

Figure 2. Pterodactylus metacarpus including 5 digits.

Figure 5. Pterodactylus metacarpus including 5 digits. Colors added here.

The elements of the right metacarpus
are better understood and communicated when colorized (Fig. 4). Not sure where the counter plate is, but it may include some of the elements missing here, like the distal mc1. The left manus digit 5 is on that counter plate, judging from the broken bone left behind on the plate.

Figure 6. Pterodactylus antiquus pes in situ and restored to in vivo appearance.

Figure 6. Pterodactylus antiquus pes in situ and restored to in vivo appearance.

The pes is well preserved
Adding DGS colors to the elements helps one shift them back to their invivo positions. The addition of PILs (parallel interphalangeal lines, Peters 2000) complete the restoration. This is a plantigrade pes, judging by the continuous PILs that other workers continue to ignore.

Figure 6. Pterodactylus in situ under white light and UV from Tischlinger 2020. Colors added here.

Figure 7. Pterodactylus in situ under white light and UV from Tischlinger 2020. Colors added here.

Sometimes PhDs overlook certain details.
And that’s okay. Others will always come along afterward to build on their earlier observations. Tischlinger 2020 provides that excellent opportunity.


References
Collini CA 1784. Sur quelques Zoolithes du Cabinet d’Histoire naturelle de S. A. S. E. Palatine & de Bavière, à Mannheim. Acta Theodoro-Palatinae Mannheim 5 Pars Physica, 58–103.
Cuvier G 1801. [Reptile volant]. In: Extrait d’un ouvrage sur les espèces de quadrupèdes dont on a trouvé les ossemens dans l’intérieur de la terre. Journal de Physique, de Chimie et d’Histoire Naturelle 52: 253–267.
Cuvier G 1809. Mémoire sur le squelette fossile d’un reptile volant des environs d’Aichstedt, que quelques naturalistes ont pris pour un oiseau, et dont nous formons un genre de Sauriens, sous le nom de Petro-Dactyle. Annales du Muséum national d’Histoire Naturelle, Paris 13: 424–437.
Peters D 2000. Description and Interpretation of Interphalangeal Lines in Tetrapods. Ichnos, 7: 11-41
Tischlinger H 2020. Der „Collini-Pterodactylus“ – eine Ikone der Flugsaurier-Forschung Archaeopteryx 36: 16–31; Eichstätt 2020.
von Soemmering ST 1812. Über einen Ornithocephalus. Denkschriften der Akademie der Wissenschaften München, Mathematischen-physikalischen Classe 3: 89-158.
Wellnhofer P 1970. Die Pterodactyloidea (Pterosauria) der Oberjura-Plattenkalke Süddeutschlands. Abhandlungen der Bayerischen Akademie der Wissenschaften, N.F., Munich 141: 1-133.

wiki/Pterodactylus

 

 

 

 

The ‘feathery’ anurognathid repaired with higher resolution

No one likes to trace and reconstruct
small, crushed anurognathid pterosaurs. That’s where Digital Graphic Segregation (DGS; Fig. 1) comes into play. Come to think of it, it’s rare that any pterosaur worker attempts to trace an anurognathid in precise detail before going straight to freehand (Fig. 1 upper left by Wang, Zhou, Zhang and Xu 2002; Bennett 2007).

Figure 1.  Comparing data gathering results using first-hand observation with the DGS method on the skull of Jeholopterus.. The digital outlines were then transferred into the reconstruction.

Back in 2006 I made a first attempt
at reconstructing this specimen (CAGS Z070, originally CAGS IG 02-81, Figs. 2–6), back when it was considered Jeholopterus sp. (Lü et al., 2006). That was before any other disc-head anurognathids were known and early in my studies using low-resolution images.

Those mistakes are corrected here
(Figs. 2, 3) with higher resolution images provided by Yang et al. 2018 and a fair amount of practice during the intervening years from several other disc-head pterosaurs, like SMNS 81928 (Bennett 2007) Discodactylus and Vesperopterylus.

Figure 1. The skull of the fuzzy anurognathid CAGS Z020 under DGS.

Figure 2. The skull of the fuzzy anurognathid CAGS Z070 under DGS. This is a ventral exposure. Elements match those of other anurognathids. Colors enable rapid and easy identification of every bone. The mandible is blue, shown together with the palate elements. Below in red are the quadrates. Note how low and wide the skull is.

DGS comes in handy
to segregate and reconstruct the bones of the CAGS Z070 specimen exposed in ventral view. (Fig. 2). All the elements are similar to those in other disc-head anurognathids.

Figure 2. CAGS Z020 anurognathid reconstructed in lateral view. As in other disc-head anurognathids the frog-like eyeballs likely rose above the flat skull.

Figure 3. CAGS Z020 anurognathid reconstructed in lateral view. As in other disc-head anurognathids the frog-like eyeballs likely rose above the flat skull.

Note: There are no giant eyeballs in the front half of the skull here,
nor in any anurognathid pterosaurs (Fig. 4). When Bennett 2007 mistook a maxilla for a giant scleral ring, that became gospel to a generation of lazy anurognathid workers and artists. No giant eye rings have ever been found since in any pterosaur. No matching giant eye ring was ever found on the original Bennett 2007 specimen. Better still, try to trace the bones yourself — because in science anyone can repeat a valid observation.

That being said, this is a difficult skull to trace.
Fortunately evolution works in micro steps and we’ve had several other disc-head anurognathids to look at for the Bauplan (= blueprint). You may need to practice on a few before tackling the CAGS specimen preserved in palatal / ventral view.

FIgure 3. A selection of anurognathid skulls. All follow the pattern of a small eye ring in the posterior half of the skull, except Bennett's 2007 freehand reconstruction.

FIgure 4. A selection of anurognathid skulls from 2013. All follow the pattern of a small eye ring in the posterior half of the skull, except Bennett’s 2007 freehand reconstruction.

You might remember, Yang et al. 2018
used this CAGS specimen to say pterosaurs had something like feathers all over their body. New Scientist  and The Scientist quotes several pterosaur experts in their handling of this story. All of them fell prey to ‘Pulling a Larry Martin‘ by focusing on one trait while ignoring a long list of missing taxa and all their traits. None of the following pterosaur experts traced the materials nor performed the necessary phylogenetic analyses.

  1. “I think it’s now case closed, pterosaurs had feathers.” —Steve Brusatte
  2. “Our interpretation is that these bristle-type structures are the same as the feathers on birds and dinosaurs,” —Mike Benton
  3. “This is a very important discovery, because it shows that integumentary [skin] filaments evolved in both dinosaurs and pterosaurs. That’s not surprising because they are sister groups, but it is good to know.” —Kevin Padian
  4. ”The thing that is cool is that it bolsters the idea that pterosaurs and dinosaurs are sister taxa, if they are correct in interpreting these structures as a type of feather,” —David Martill

Surprisingly taking a more critical point-of-view is Chris Bennett, “The authors’ characterization of the integumentary structures as ‘feather-like’ is inappropriate and unfortunate. It seems to me to be premature to use filamentous integumentary structures to support a close phylogenetic relationship between pterosaurs and dinosaurs.”

The CAGS specimen

Figure 5. The CAGS specimen attributed to Dendrorhyncoides and then to Jeholopterus, but is distinct from both.

In the large reptile tree
(LRT, 1707+ taxa) pterosaurs are fenestrasaur, tritosaur lepidosaurs. In other words, pterosaurs are closer to lizards than to dinosaurs. Overlooked by Benton and the others, several pterosaur outgroups (e.g. Cosesaurus, etc.) also have furry, fuzzy, feathery coverings. Perhaps thinking of the status quo, scientists who collect a paycheck have preferred not to test this twenty-year-old hypothesis of interrelationships (Peters 2000). Sometimes it takes an outsider with gobs of retirement time to expose the fallacies of traditional textbooks (= secondary profit generators).

Figure 2. Interpretation of bony and soft tissue elements in the CAGS specimen. Click to see rollover image.

Figure 6. Interpretation of bony and soft tissue elements in the CAGS specimen. Click to see rollover image.

A note on the ventral view of the CAGS skull:
The reduction of the maxillary palate bones to slender Y-shaped structures (green in Fig. 2) has not been noticed by other workers content with freehand illustrations. Earlier in 2013 the hypothesis was proposed that these slender Y-shaped bones acted like sensors in flight while feeding on flying insects. Once the fly touched the sensor, the open jaws would snap shut. Flies and mosquitos were radiating during the Triassic alongside these aerial insect eaters.

Phylogeny
Despite these several skull score changes, no shift in topology toward the other flat-head anurognathids was recovered.


References
Bennett SC 2007. A second specimen of the pterosaur Anurognathus ammoni. Paläontologische Zeitschrift 81(4):376-398.
Lü J-C, Ji S, Yuan C-X and Ji Q 2006. Pterosaurs from China. Geological Publishing House, Beijing, 147 pp.
Wang X, Zhou Z, Zhang F and Xu X 2002. A nearly completely articulated rhamphorhynchoid pterosaur with exceptionally well-preserved wing membranes and “hairs” from Inner Mongolia, northeast China. Chinese Science Bulletin 47(3): 226-230.
Yang et al. (8 co-authors including Benton MJ) 2018. Pterosaur integumentary structures with complefeather-like branching. Nature ecology & evolution

wiki/Jeholopterus

The sculpture shown on the Jeholopterus wiki page is based on my model, but they changed the skull to reflect the Bennett 2007 type skull… which is a mistake.

https://pterosaurheresies.wordpress.com/2018/12/18/pterosaur-pycnofibres-revisited-yang-et-al-2018/

https://pterosaurheresies.wordpress.com/2014/02/13/anurognathid-eyes-the-evidence-for-a-small-sclerotic-ring/

https://pterosaurheresies.wordpress.com/2013/06/21/anurognathids-and-their-snare-drum-palates/

https://www.newscientist.com/article/2188405-stunning-fossils-show-pterosaurs-had-primitive-feathers-like-dinosaurs/

https://www.the-scientist.com/news-opinion/pterosaurs-sported-feathers–claim-scientists-65220

 

The Berlin Naturkundemuseum Pterodactylus reconstructed

The MBR 3655 specimen of Pterodactylus in situ
looks like roadkill. Here (Fig. 1) a second sort of DGS (Digital Graphic Segregation) is used to reassemble the jumble. This sort does not rely on someone tracing each bone with transparent color. This goes faster and further minimizes freehand bias and error. More of the pertinent pixels in the original are used in the reconstruction.

Figure 1. The MBR3655 specimen of Pterodactylus reconstructed using DGS methods from the in situ photo.

Figure 1. The MBR3655 specimen of Pterodactylus reconstructed using DGS methods from the in situ photo. The foot proportion pattern is unique and the sternum rccalls that of Scaphoganthus.

When added
to the Large Pterosaur Tree (LPT, 289 taxa) this taxon nests at the base of one of the Pterodactylus clades that include the Vienna specimen (NHMW 1975/1756) and the n21 specimen (BSP1937 I 18). Still have not found two identical (conspecific) taxa from the Solnhofen Formation except the only known juvenile Rhamphorhynchus, a mid-sized juvenile of one of the largest species discussed earlier here.


References
Broili F 1938. Beobachtungen an Pterodactylus. Sitz-Bayerischen Akademie der Wissenschaten, zu München, Mathematischen-naturalischenAbteilung: 139–154.
Wellnhofer P 1970. Die Pterodactyloidea (Pterosauria) der Oberjura-Plattenkalke Süddeutschlands. Abhandlungen der Bayerischen Akademie der Wissenschaften, N.F., Munich 141: 1-133.

wiki/Pterodactylus