If you want to learn about pterosaurs, start with this one.

Still unnamed
the privately-held ‘Painten pterodactyl’ (Tischlinger and Frey 2013) is a perfectly articulated small specimen (Figs. 1-4). Phylogenetically it nests in the large pterosaur tree (LPT, 232 taxa) at the base of the clade that leads to Pterodactylus (Fig. 5), just off the path toward Germanodactylus…and it’s not too far removed from its Scaphognathus ancestors (Fig. 5).

If you want to learn about pterosaurs,
start with this one (Figs. 1-4). The Painten pterodactyl makes it easy to see all the bones in natural (undisturbed) articulation. Even the sternal complex (magenta) is visible below all the other pectoral bones.

Figure 1. The Painten pterosaur specimen in situ under visible and UV light, then under DGS to identify the bones with colors.

Figure 1. The Painten pterosaur specimen in situ under visible and UV light, then under DGS to identify the bones with colors.

The skull
has the standard premaxilla with four teeth per side. Traditionally overlooked tiny secondary nares are visible. The temporal arch is very low on the skull.

Figure 2. Painten pterosaur skull.

Figure 2. Painten pterosaur skull. Only the palate remains buried in this excellent example of a preparator’s skill and perfect preservation.

The wrist
(Fig. 3) includes an excellent vestigial manual digit 5 curled up on the palmar side of the left hand. That is an unexpected taphonomic displacement because in vivo digit 5 would be on the axially torsioned dorsal side of the manus. The vestige appears to be coming up around the crushed edge where metacarpal 5 is buried underneath. The carpals and digit 5 show some dislocation, which may explain how the remains of digit 5 ended up on the palmar side of the manus.

Figure 3. The wrist of the Painten pterosaur. Here the vestige of manual digit 5 (blue) is clearly visible on the palmar side of the left wrist.

Figure 3. The wrist of the Painten pterosaur. Here the vestige of manual digit 5 (blue) is clearly visible on the palmar side of the left wrist.

The feet, tail and wingtips
include a disarticulated bone from the base of the tail. Unguals tipped all five pedal digits. one wing bone (m4.4) was broken and healed in life.

Figure 4. The feet and tail of the Painten pterosaur with colors applied to bones. One loose proximal tail bone (red) is displaced at left. Left manual 4.4 is broken and re-healed in a jagged fashion. The wing tips are large, pulley-like joints. The wing unguals (dark blue) are displaced.

Figure 4. The feet and tail of the Painten pterosaur with colors applied to bones. One loose proximal tail bone (red) is displaced at left. Left manual 4.4 is broken and re-healed in a jagged fashion. The wing tips are large, pulley-like joints…or are those round unguals now lacking tips? Only a closer look will tell, but the tips seem to have neck-like indentations.

We first looked at
the Painten pro-pterodactylid here in March, 2014.

The disappearance of the maxilla ascending process
and the appearance of the tiny secondary naris and nasal descending process appear during phylogenetic miniaturization in this clade.

Figure 6. Painten pterosaur ancestors and descendants.

Figure 5. Painten pterosaur ancestors and descendants. The development of  the secondary naris is documented in the smaller Scaphognathus, which needs a new generic name.  The naris becomes confluent with the antorbital fenestra when the ascending process of the maxilla disappears and the descending stem of the nasal is retained (in some taxa). Other pterodactyloid-grade pterosaurs had a convergent apparent confluence of the naris.

With the majority of the confluent fenestra
devoted to the naris, perhaps we should think of this opening differently.

Figure 6. The Painten pterosaur phylogenetically nests between two smaller specimens in the LPT. 

Figure 6. The Painten pterosaur phylogenetically nests between two smaller specimens in the LPT.

Big compared to its sisters,
the Painten pterosaur is the last in this lineage to have robust cervicals, based on comparison to Ningchengopterus (Fig. 6), a taxon closer to the many Solnhofen pterodactylids in museum collections (Fig. 7). This phylogenetic variety exhibited with Solnhofen and Chinese pterosaurs suggests a wide distribution for this clade in the Late Jurassic.

The Pterodactylus lineage and mislabeled specimens formerly attributed to this "wastebasket" genus

Figure 7 Click to enlarge. The Pterodactylus lineage and mislabeled specimens formerly attributed to this “wastebasket” genus

In summary
This pterosaur is an ideal teaching  specimen because it has all of its bones in articulation and nests at a transitional node in pterosaur phylogeny.

References
Tischlinger H and Frey E 2013.  Ein neuer Pterosaurier mit Mosaikmerkmalen basaler und pterodactyloider Pterosauria aus dem Ober-Kimmeridgium von Painten (Oberpfalz, Deutschland) — A new pterosaur with mosaic characters of basal and pterodactyloid pterosauria from the Upper Kimmeridgian of Painten (Upper Palatinate, Germany) Archaeopteryx 31:1-13.

 

A Brazilian stem pteranodontid, and Brazil wants its fossils back!

Figure 1. The cf.Tupuxuara specimen is larger than sister taxa in the LPT.

Figure 1. The cf.Tupuxuara specimen is larger than sister taxa in the LPT.

cf.Tupuxuara (SMNK??? Elgin 2014, Early Cretaceous). Originally considered close to Tupuxuara, here this specimen nests between Eopteranodon and the base of the Pteranodontia. The metacarpals and antebrachium are relatively short. The large pentagonal sternal complex anchors large flight muscles. Distinct from the Pteranodontia, but like the Eopteranodon clade, the carpal and tarsal elements were not co-ossified. The ventral pelvis remained open, as in Eopteranodon and most tested nyctosaurids. In other words, this is NOT a female…necessarily.

Figure 2. Early Cretaceous cf.Tupuxuara from the Elgin 1914 dissertation. This taxon nests between the Solnhofen specimen B St 1878 VI 1 and Eopteranodontia + Pteranodontia in the LPT, far from Tupuxuara. Reconstruction from underlying in situ specimen from the Elgin 2014 dissertation available online.

Figure 2. Early Cretaceous cf.Tupuxuara from the Elgin 1914 dissertation. This taxon nests between the Solnhofen specimen B St 1878 VI 1 and Eopteranodontia + Pteranodontia in the LPT, far from Tupuxuara. Reconstruction from underlying in situ specimen from the Elgin 2014 dissertation available online. Missing parts filled in.

You might want to think of this pterosaur
as the first of the large Pteranodontia, still nesting with the Germanodactylus clade not leading to dsungaripterids, Shenzhoupterus and tapejarids, including Tupuxuara). Elanodactylus is another large member of this clade (Fig. 3).

Figure 3. Subset of the large pterosaur tree (LPT) with the addition of cf. Tupuxuara apart from Tupuxuara and at the base of the Pteranodontia.

Figure 3. Subset of the large pterosaur tree (LPT) with the addition of cf. Tupuxuara apart from Tupuxuara and at the base of the Pteranodontia.

The Elgin 2014 thesis was completed in May 2014.
Just a few months earlier, in March 2014 a paper appeared in Nature entitled, “Brazil clamps down on illegal fossil trade.” The first sentence reads, “Thirteen people are scheduled to go on trial in Brazil for smuggling fossils out of the country, apparently to private collectors and to museums in Germany and the United Kingdom.” Do you think Dr. Elgin was worried? Evidently not. In his PhD thesis Elgin wrote, The large numbers of [Chapada do Araripe] specimens that at the time of writing lacked any full or proper description was one of the major influences in the creation of this body of work, creating a catalogue of fossils that increase our understanding of this enigmatic group and permitting ready access to photographs and descriptions for future workers.” And for making those images available, Dr. Elgin, thank you!

Dr. Elgin further notes
“Brazil has banned the commercial sale of all fossil originating from its territories since 1942.” Then concludes, “The pterosaurs described within this body of work are presented for the good of the scientific community. While discouraging illicit trafficking is to be encouraged, the fact that the featured specimens are interred within a registered museum, rather than ending up within a private institution as would have certainly been their fate otherwise, guarantees the continued and universal access to any and all persons, to the benefit of the international community.”

Worried about the loss of Brazilian fossils to German museums,
Brazilian paleontologist, Alexander Kellner, cites the loss of cultural heritage. On the other hand, English paleontologist, David Martill quips, Knowing “dodgy” people is the only way to get samples, because the DNPM ignores requests to dig.” Brazilian paleontologist, Max Langer says, “Fossils must be kept in the country to help to improve Brazilian science.” And he expects fellow researchers to hold Brazil’s laws in higher regard than the private collectors who also fuel the trade.

David Martill expressed more of his thinking
in this online report, “In an email interview, Martill said that he “doesn’t care a damn how the fossil came from Brazil”, because that is “irrelevant to the scientific significance of the fossil. I am critical of all laws that interfere with the science of paleontology; and blanket bans on fossil collecting are indiscriminatory and only hinder science, No countries existed when the animals were fossilized.”

Bottom line:
Firsthand access to fossils… can sometimes get you into trouble with Brazil. You can see how the side line up here, with Brazilians hoping to stop exports and Europeans hoping to continue exports.

More tomorrow
on the Elgin dissertation…

References
Elgin RA 2014. Palaeobiology, Morphology, and Flight Characteristics of Pterodactyloid Pterosaurs. Innaugural Dissertation. Zur Erlangung der Doktorwürde Fakultät für Chemie und Geowissenschaften Institut für Geowissenschaften Ruprecht-Karls-Universität Heidelberg. Available online here.

Ontogeny and gender dimorphism in pterosaurs – SVP abstract 2016

Unfortunately,
and apparently, this is yet another study (Anderson and O’Keefe 2016) with a priori species assignations prior to a robust phylogenetic analysis and the creation of precise reconstructions. I hope I’m wrong, but no mention of phylogenetic analysis appears in the abstract. Nor do they mention creating reconstructions. Bennett (1993ab, 1995, 1996a, 2001ab, 2006, 2007) failed several times in similar fashion (with statistical analyses) to shed light on the twin issues of pterosaur ontogeny and dimorphism, coming to the wrong conclusions every time, based on results recovered by creating reconstructions and analyses. Further thoughts follow the abstract.

From the Anderson and O’Keefe abstract:
“The relationships of pterosaurs have been previously inferred from observed traits, depositional environments, and phylogenetic associations. A great deal of research has begun to analyze pterosaur ontogeny, mass estimates, wing dynamics, and sexual dimorphism in the last two decades. The latter has received the least attention because of the large data set required for statistical analyses. Analyzing pterosaurs using osteological measurements will reveal different aspects of size and shape variation in Pterosauria (in place of character states) and sexual dimorphism when present. Some of these variations, not easily recognized visually, will be observed using multivariate allometry methods including Principle Component Analysis (PCA) and bivariate regression analysis. Using PCA to variance analysis has better visualized ontogeny and sexual dimorphism among Pterodactylus antiquus, and Aurorazhdarcho micronyx. Each of the 24 (P. antiquus) and 15 (A. micronyx) specimens had 14 length measurements used to assess isometric and allometric growth. Results for P. antiquus analyses show modular isometric growth in the 4th metacarpal, phalanges I–II, and the femur. Bivariate plots of the ln-geometric mean vs ln-lengths correlate with the PCA showing graphically the relationship between P. antiquus and A. micronyx which are argued here to be sexually dimorphic and conspecific. Wing schematic reconstructions of all 39 specimens were done to calculate individual surface areas and scaled to show relative intraspecific wing shape and size. Finally, Pteranodon, previously identified having with sexually dimorphic groups, was compared with ln-4th metacarpal vs ln-femur data, bivariately, revealing similarities between the two groups (P. antiquus and A. micronyx = group 1; Pteranodon = group 2) in terms of a sexual dimorphic presence within the data sets.”

The Pterodactylus lineage and mislabeled specimens formerly attributed to this "wastebasket" genus

Figure 3. Click to enlarge. The Pterodactylus lineage and mislabeled specimens formerly attributed to this “wastebasket” genus

If these two workers actually had 24 P. antiquus specimens to work with,
then it was only because the labels told them so. Or they came across a cache on a slab of matrix I’m not aware of. Pterodactylus has been a wastebasket taxon for a long time (Fig.1) that, apparently the authors didn’t bother to segregate with analysis. Anderson and O’Keefe do not indicate they arrived at a large clade of P. antiquus specimens after phylogenetic analysis. Having done so, I can tell you that no other tested Pterodactylus is  identical to the holotype and no two adult pterosaurs I’ve tested are alike, even among RhamphorhynchusGermanodactylus and Pteranodon. The differences I’ve scored are individual to phylogenetic and they create cladograms that illuminate interrelationships, not sexual dimorphism or ontogeny. There are sequences of smaller species and larger ones. These can appear to be two genders, but that is a false result.

Embryo to juvenile pterosaurs
are isometrically miniaturized versions of their parents as the evidence shows time and again across the pterosaur clade. These facts have been known for over five years and it’s unfortunate that old traditions continue like this unfettered and untested under phylogenetic analysis… or so it seems… I could be wrong having not seen the presentation.

References
Anderson EC and O’Keefe FR 2016. Analyzing pterosaur ontogeny and sexual dimorphism with multivariate allometery. Abstracts from the 2016 meeting of the Society of Vertebrate Paleontology.
Bennett SC 1993a. The ontogeny of Pteranodon and other pterosaurs. Paleobiology 19, 92–106.
Bennett SC 1993b. Year classes of pterosaurs from the Solnhofen limestone of southern Germany. Journal of Vertebrate Paleontology. 13, 26A.
Bennett SC 1995. A statistical study of Rhamphorhynchus from the Solnhofen limestone of Germany: year classes of a single large species. Journal of Paleontology 69, 569–580.
Bennett SC 1996a. Year-classes of pterosaurs from the Solnhofen limestones of Germany: taxonomic and systematic implications. Journal of Vertebrate Paleontology 16:432–444.
Bennett SC 2001a, b. The osteology and functional morphology of the Late Cretaceous pterosaur Pteranodon. Part I. General description of osteology. Palaeontographica, Abteilung A, 260:1–112. Part II. Functional morphology. Palaeontographica, Abteilung A, 260:113–153.
Bennett SC 2006. Juvenile specimens of the pterosaur Germanodactylus cristatus, with a review of the genus. Journal of Vertebrate Paleontology 26:872–878.
Bennett SC 2007. A review of the pterosaur Ctenochasma: taxonomy and ontogeny. Neues Jahrbuch fur Geologie und Paläontologie, Abhandlungen 245:23–31.

New basal pterodactyloid(?) Kryptodrakon = Sericipterus, a dorygnathid

The big news this morning:
Andres, Clark and Xu (2014) have claimed to discover the earliest known pterodactyloid (Middle/Late Jurassic, Shishugou Formation in Xinjiang, China).They wrote: “We report here the earliest pterosaur with the diagnostic elongate metacarpus of the Pterodactyloidea, Kryptodrakon progenitor, gen. et sp. nov., from the terrestrial Middle-Upper Jurassic boundary of Northwest China. Phylogenetic analysis confirms this species as the basalmost pterodactyloid.”

Andres reported, “In paleontology, we love to find the earliest members of any group because we can look at them and figure out what they had that made the group so successful.” 

If it is one, it’s a big one!
Wingspan estimates are over a meter.

That big size is the red flag
Of course, this flies in the face of the large pterosaur tree, which recovered four origins for pterodactyloid-grade pterosaurs at about this same time, and they were all tiny. Andres, Clark and Xu did not include these tiny pterosaurs in their phylogenetic analysis.

Figure 1. The bits and pieces of Kryptodrakon assembled into a Pterodactylus bauplan, from Andres, Clark and Xu 2014.

Figure 1. The bits and pieces of Kryptodrakon assembled into a Pterodactylus bauplan, from Andres, Clark and Xu 2014.

It’s always difficult to reassemble bits and pieces,
but not impossible. Andres, Clark and Xu did that above (Fig. 1), using a small Pterodactylus as their bauplan or blueprint.

There’s an alternate bauplan available
and it’s also from the same Shishugou Formation. Sericipterus is a very large and gracile dorygnathid (Fig. 2). When you put the bones of Krypodrakon on top of the bauplan for Sericipterus you find a good match.

Figure 2. The bone bits of Kryptodrakon placed on the bauplan of the giant dorygnathid, Sericipeterus, also from the Shishugou Formation. There's a good match here.

Figure 2. Here the bone bits of Kryptodrakon are placed on the bauplan of the giant dorygnathid, Sericipeterus, also from the Shishugou Formation. There’s a good match here. Perhaps Kryptodrakon is a junior synonym for Sericipterus, filling in some of its missing pieces.

And suddenly that “long metacarpus” is not so long anymore. Notably, Sericipterus had gracile wing bones, and that proved confusing to Andres, Clark and Xu. “Thinner” can sometimes be confused with “longer” unless you know what the bauplan is.

But wait, there’s more.
Compare the metacarpus of Kryptodrakon with its dorsal rib and the metacarpus doesn’t look so long anymore. The same holds for the distal carpal, scapula, humerus and wing joint scraps. They’re all too big for that metacarpus to be “elongate.”

A more parsimonious solution
Kryptodrakon and Seripterus are both from the same formation. They are the same size, and their bones have the same shape (so far as can be told from available scraps). We also know from a larger phylogenetic analysis that includes tiny pterosaurs that basal pterodactyloid-grade pterosaurs were all tiny and Kryptodrakon was big.

Therefore,
the more parsimonious solution is to consider Kryptodrakon a junior synonym for Sericipterus, a giant dorygnathid, not a pterodactyloid.

One more thing
Andres, Clark and Xu were also the discoverers and authors of Sercipterus, the only other pterosaur found in the Shishugou Formation.

Sorry to throw cold water on this.
But testing for parsimony is good Science.

References
Andres B, Clark JM and Xu X 2010.A new rhamphorhynchid pterosaur from the Upper Jurassic of Xinjiang, China, and the phylogenetic relationships of basal pterosaurs, Journal of Vertebrate Paleontology 30: (1) 163-187.
Andres B, Clark J and Xu X 2014. The Earliest Pterodactyloid and the Origin of the Group. Current Biology (advance online publication)
DOI: http://dx.doi.org/10.1016/j.cub.2014.03.030

Read more: Science_News