Hypsibema missouriensis – a Late Cretaceous Appalachia duckbill dinosaur

Figure 1. Model of Hypsibema missouriensis, a hadrosaurid dinosaur

Figure 1. Model of Hypsibema missouriensis, a hadrosaurid dinosaur

Hypsibema missouriensis
(Cope 1869; Gilbert and Stewart 1945; Gilbert 1945; Baird and Horner 1979; Darrough et al. 2005; Parris 2006; Campanian, 84-71 mya, Late Cretaceous) is a fairly large hadrosaurid dinosaur discovered in 1942, at what later became known as the Chronister Dinosaur Site near Glen Allen, Missouri. At present this literal pinprick in the map of Missouri is the only site that preserves dinosaur bones.

Figure 2. Where the Hypsibema maxilla chunk came from on the skull of Saurolophus.

Figure 2. Where the Hypsibema maxilla chunk (Figure 3) came from modeled on the skull of Saurolophus.

Small pieces of broken bone and associated caudals and toes
were first discovered when digging a cistern. They had been found about 8 feet (2.4 m) deep imbedded in a black plastic clay. The area is in paleokarst located along downdropped fault grabens over Ordovician carbonates.

Gilmore and Stewart 1945 described a series of Chronister caudal centra (now at the Smithsonian) as sauropod-like, reporting, “The more elongate centra of the Chronister specimen, with the possible exception of Hypsibema crassicauda Cope, and the presence of chevron facets only on the posterior end appear sufficient to show that these vertebral centra do not pertain to a member of the Hadrosauridae.”

First named Neosaurus missouriensis,
the caudals were renamed Parrosaurus missouriensis by Gilmore and Stewart 1945 because “Neosaurus” was preoccupied. The specimen was allied to Hypsibema by Baird and Horner 1979.

Figure 3. Back portion of a Hypsibema maxilla showing tooth root grooves and cheek indention close to jugal.

Figure 3. Back portion of a Hypsibema maxilla showing tooth root grooves and cheek indention close to jugal.

Back in the 1980s
I enjoyed going to the Chronister site with other members of the local fossil club, the Eastern Missouri Society for Paleontoogy. I was lucky enough to find both a maxilla fragment (Fig. 3) and a dromaeosaurid tooth. I remember the horse flies were pesky and  one morning, before the other members got there, I was met by a man with a shot gun who relaxed when I identified myself. A friend found a series of hadrosaur toe bones, each about as big as a man’s hand (sans fingers). The bone was so well preserved you could blow air through the porous surfaces.

Baird D and Horner JR 1979. Cretaceous dinosaurs of North Carolina. Brimleyana 2: 1-28.
Cope  ED 1869.
Remarks on Eschrichtius polyporusHypsibema crassicaudaHadrosaurus tripos, and Polydectes biturgidus“. Proceedings of the Academy of Natural Sciences of Philadelphia 21:191-192.
Darrough G; Fix M; Parris D and Granstaff B 2005.
 Journal of Vertebrate Paleontology 25 (3): 49A–50A.
Gilmore CW and Stewart DR 1945. A New Sauropod Dinosaur from the Upper Cretaceous of Missouri. Journal of Paleontology (Society for Sedimentary Geology 19(1): 23–29.
Gilmore CW 1945. Parrosaurus, N. Name, Replacing Neosaurus Gilmore, 1945. Journal of Paleontology (Society for Sedimentary Geology 19 (5): 540.
Parris D. 2006. New Information on the Cretaceous of Missouri. online

bolinger county museum of natural history
More info and links

New insights into the ornithopod manus

Updated March 13, 2019. Revising digit identities.

like Edmontosaurus, and their kin are the ornithopod ornithischian dinosaurs, a clade I have been ignoring until now. Wikipedia reports, “[they] started out as small, bipedal running grazers, and grew in size and numbers until they became one of the most successful groups of herbivores in the Cretaceous world, and dominated the North American landscape.” 

Dryosaurus, Camptosaurus, Iguanodon and Edmontosaurus are genera within this clade and each has an interesting manus (Fig. 1). When one works in phylogenetic analysis it is imperative to compare homologous digits (apples to apples). In ornithopods, those homologies appear to be masked and perhaps misinterpreted by the appearances of new phalanges and the disappearances of old phalanges. Putting them all in one image (Fig.1) clarifies all issues (even without traveling to visit the fossils firsthand!). Hopefully the data are accurate to start with.

This all started with a phylogenetic analysis
that appeared to indicate that Edmontosaurus had a manual digit 1 with an extra digit that made it look like manual digit 2. Comparisons to other ornithopods ensued. A quick look through the Internet brought B. Switek’s article (see below) to the fore.

Figure 1. Ornithopod manus. Here the hands of Dryosaurus, Camptosaurus, Iguanodon and Edmontosaurus are compared. Note the turquoise metatarsal homologies and the digit identifications based on that.

Figure 1. Ornithopod manus. Here the hands of Dryosaurus, Camptosaurus, Iguanodon and Edmontosaurus are compared. Note the turquoise metatarsal homologies and the digit identifications based on that.

Science writer Brian Switek 
writing for Smithsonian.com reports,

  1. “…the great herbivore Iguanodon had prominent thumb spikes.
  2. “The peculiar false thumb of Iguanodon was originally thought to set into the dinosaur’s nose.”
  3. “But why should Iguanodon have a hand spike? “
  4. “Though my own suggestion is not any better than those I have been disappointed by, I wonder if the Iguanodon spike is a Mesozoic equivalent of another false thumb seen among animals today—the enlarged wrist bones of red and giant pandas…  the Iguanodon spike was rigid.” Unfortunately that’s as far as journalist Switek has allowed himself to go, rather than proposing the homologies and comparisons demonstrated here.

Giving credit where credit is due,
Switek may be the first to suggest the spike was not a digit. I don’t know and was not able to find out the history of the spike. Given the text from his blogpost, you can see Switek’s choice of words actually evolves from “thumb spikes” to “false thumb” to “hand spike” to “enlarged wrist bone”. Like Brian, I also lack a PhD, but that doesn’t stop us from making contributions. If I’m duplicating earlier academic efforts, please let me know so credit can be given.

Here we’ll show
that the Iguanodon spike is indeed a thumb ungual. The first phalanx and metacarpal are fused like two poker chips.

We’ll start with
the right manus of Dryosaurus, a basal ornithopod (at least in the large reptile tree it is, where only one other ornithopod, Edmontosaurus, is currently represented). During the course of this, I want you to focus on the the homologies of metatarsals 2 and 3 (colored in turquoise). These, I think, will guide us to correct interpretations of the other elements of the various ornithopod manus.

Now back to the manus of Dryosaurus:

  1. Data comes form loose bones in a photo formed in the shape of a hand, not an in-situ articulated hand. Thus I do not know the identification or placement of the carpals
  2. Five metacarpals are present.
  3. Mc3 is the longest. Slightly shorter is mc2.
  4. Phalangeal formula is 2-3-4-3-2, but digit 1 does not appear to be tipped with a sharp ungual.
  5. Digit 3 is the longest. Slightly shorter is digit 2.
  6. Unguals are lost in digits 4 and 5.
  7. The phalangeal formula is 2-3-4-3-2

The manus of Camptosaurus

  1. Is reduced (stumpy) by comparison to Dryosaurus
  2. Mc 1 is a disk. Mc1.1 is a disk
  3. Mc3.2 appears to fuse with m3.3
  4. m4.3 and m5.2 are lost
  5. The phalangeal formula is 2-3-3-2-1

The manus of Iguanodon

  1. is more robust and highly modified by comparison to Dryosaurus
  2. Two robust wrist elements fill the wrist.
  3. Metacarpal 1 is a disc. M1.1 is a disc fused to mc1. M1.2 is a spike
  4. Ungual 2 is not sharp
  5. Ungual 3 is a round hoof
  6. Ungual 4 (m3.4) is lost
  7. Mt5 is shorter. Two tiny phalanges are added.
  8. The new phalangeal formula is 2-3-3-2-4

The manus of Edmontosaurus 

  1. is long and gracile by comparison to Dryosaurus.
  2. Digit 1 is absent
  3. Digits 2, 3 and 4 have 3 phalanges
  4. Digit 5 is a vestige
  5. As in Iguanodon, ungual 2 is not sharp and ungual 3 is a hoof
  6. The new phalangeal formula is 0-3-3-3-3.