Tachyglossus, the other egg-laying mammal

Figure 1. The echidna (genus: Tachyglossus) in life. This slow-moving spine-covered anteater has digging claws.

Figure 1. The echidna (genus: Tachyglossus) in life. This slow-moving spine-covered anteater has digging claws.

Tachyglossus aculeatus (Shaw 1792) is the echidna and the only other genus of egg-laying mammal. It protects itself with sharp spines and has a long, ant-catching tongue. The hands and feet are adapted to digging with short, almost immobile proximal elements (Fig. 3) and long claws. Prepubic bones precede the pubis. A proximal process sits atop the fibula. The leathery snout without whiskers is sensitive to vibrations.

Figure 2. The skull of Tachyglossus is largely fused together, lacks teeth and has no lateral temporal fenestra (because the jaws don't move much in this anteater.

Figure 2. The skull of Tachyglossus is largely fused together, lacks teeth and has no lateral temporal fenestra (because the jaws don’t move much in this anteater. Hard to find sutures here. Let me know if you have better data to make corrections.

Distinct for its sister,
Ornithorhynchus, and many other mammals, the acetabulum is perforated. The lateral temporal fenestra is absent. So are the teeth. Like the hedgehog, the echidna can roll itself into a ball for protection.

Figure 3. Tachyglossus skeleton, manus and x-rays. Note the perforated pelvis.

Figure 3. Tachyglossus skeleton, manus and x-rays. Note the perforated pelvis.

There are those
who say characters define a taxon. We have to get away from that hypothesis. Here a perforated acetabulum would make Tachyglossus a dinosaur, to the late Larry Martin’s delight. Tachyglossus has no temporal fenestra. So, does that make it an anapsid? No. The only thing that tells us what a taxon is… is its placement on a wide gamut cladogram that tests hundreds of candidate sister taxa and hundreds of traits. Testing a suite of several hundred traits in a wide gamut study is the only way to confidently determine taxonomy and avoid the pitfalls of convergence and taxon exclusion that plague smaller studies that too often fail to minimize false positives and ‘by default’ nestings. And some DNA studies cannot be validated, except by morphological studies.

References
Shaw G 1792. Musei Leveriani explicatio, anglica et latina.

wiki/Tachyglossus

Advertisements

Basal mammals: Guess what they evolved to become.

Can you guess
(or do you know) which of these taxa evolved to become a human? a killer whale? a rabbit? a giraffe? a bat? a pangolin?

Figure 1. Can you guess which of these taxa evolved to become a human? a killer whale? a rabbit? a giraffe?

Figure 1. Can you guess which of these taxa evolved to become a human? a killer whale? a rabbit? a giraffe?

H. Onychodectes – basal to all large herbivorous mammals, including giraffes.

G. Maelestes – basal to tenrecs and toothed whales.

F. Tupaia – basal to the gnawing clade including rodents and rabbits.

E. Ptilocercus – basal to Primates, including humans (but note the loss of all premaxillary teeth in this extant taxon).

D. Palaechthon – basal to flying lemurs, bats and pangolins.

C. Monodelphis – basal to all placental mammals.

B. Asioryctes – basal to Monodelphis and all placental mammals.

A. Eomaia – basal to all therian mammals (placentals + marsupials).

These are the basalmost taxa
in various clades of Eutherian (placental) mammals. Not a lot of difference to start (which makes scoring difficult). So much potential at the end. Eomaia goes back to the Early Cretaceous, so it’s not difficult to imagine the radiation of these taxa throughout the Cretaceous.

This falls in line with
the splitting of the African golden mole (Chrysochloris) from its South American sister, Necrolestes, a diversification, migration and split that had to happen before Africa split from South American in the Early Cretaceous.

Sharp-eyed readers
will note the re-identification of bones and teeth in Palaechthon, Ptilocercus and Tupaia. It’s been a long weekend trying to figure out long-standing problems in this portion of the LRT. Some of these taxa were some of the first studied and my naiveté was the source of the earlier disinformation, now corrected. If you see any errors here, please advise and, if valid, repairs will be made.

There’s nothing special about Henosferus

The incisors are not too big
or weird or crowded (Fig. 1), the canine just rises above the rest of the teeth, there are only 5 premolars all standard-shaped, and only three molars, all standard-shaped. The dentary definitely formed the main jaw joint and the post-dentary bones must have been tiny.

Figure 1. Henosferus mandible restored by Rougier et al. 2005 from several broken specimens.

Figure 1. Henosferus mandible restored by Rougier et al. 2005 from several broken specimens.

…and that’s why
Henosferus ( Rougier et al. 2007; Middle Jurassic) makes a good candidate for basalmost mammal. There are too few traits here to add it to the large reptile tree (LRT). Frankly, I’m eyeballing this restoration. It compares well with Juramaia (Fig. 2) without the odd molars and incisors. 

Figure 2. Juramaia (Late Jurassic, 160 mya) is more completely known and nests between monotremes and therians (marsupials + placentals).

Figure 2. Juramaia (Late Jurassic, 160 mya) is more completely known and nests between monotremes and therians (marsupials + placentals).

Henosferus is traditionally considered
a member of the Australosphenida, a group of mammals that include monotremes, and other taxa known chiefly from scraps. Vincelestes sometimes makes this list, but in the LRT it nests as a carnivorous marsupial.

References
Luo Z-X, Yuan C-X, Men Q-J and JiQ 2011. A Jurassic eutherian mammal and divergence of marsupials and placentals. Nature 476: 442–445. doi:10.1038/nature10291.
Rougier, GW, Martinelli AG, Forasiepi AM and Novacek M J 2007. New Jurassic mammals from Patagonia, Argentina : a reappraisal of australosphenidan morphology and interrelationships. American Museum novitates, no. 3566. online here.

wiki/Juramaia
wiki/Henosferus

Figuring out the upside-down skull of Yanoconodon

Figure 1. Yanoconodon fossil in situ. See the skull in closeup in figure 2.

Figure 1. Yanoconodon fossil in situ. See the skull in closeup in figure 2. The published tracing is distorted here to match the underlying photo.

Wikipedia reports, “Yanoconodon was a small mammal, barely 5 inches (13 centimetres) long. It had a sprawling posture, Yanoconodon was a Eutriconodont, a group composing most taxa once classified as “triconodonts” which lived during the time of the dinosaurs. These were a highly ecologically diverse group, including large sized taxa such as Repenomamus that were able to eat small dinosaurs, the arboreal Jeholodens, the aerial volaticotherines and the spined Spinolestes. Yanoconodon is inferred to be a generalized terrestrial mammal, capable of multiple forms of locomotion.

Figure 1. Yanoconodon is exposed in ventral view. Even so, if you employ DGS, even on a fuzzy photo, you can put together a reconstruction that shares several traits with Repenomamus.

Figure 2. Yanoconodon is exposed in ventral view. Even so, if you employ DGS, even on a fuzzy photo, you can put together a reconstruction that shares several traits with Repenomamus.

Mammal-like reptiles?
Wikipedia also reports, “The Yanoconodon holotype is so well preserved that scientists were able to examine tiny bones of the middle ear. These are of particular interest because of their “transitional” state: Yanoconodon has fundamentally modern middle ear bones, but these are still attached to the jaw by an ossified Meckel’s cartilage. This is a feature retained from earlier stem mammals, and illustrates the transition from a basal tetrapod jaw and ear, to a mammalian one in which the middle ear bones are fully separate from the jaw. Despite this feature Yanoconodon is a true mammal. It is thought that the feature was retained during early embryo development,[4] whereas it is lost in most other mammal groups. The intermediate anatomy of the middle ear of Yanocodon is said to be a “Rosetta Stone”[5] of mammalian middle ear evolution.”

In the large reptile tree (LRT, 1037 taxa) Yanoconodon, Repenomamus, Jeholodens and Spinolestes are not mammals, but very close to the base of the Mammalia. Both clades share Pachygenelus as last common ancestor. So that means the ‘transitional state’ mentioned above is indeed outside the Mammalia. Other paleontologists consider this list of taxa to be mammals, but here the mammal-like traits they had were developed in parallel and not quite to mammal standards.

Figure 4. Repenomamus reconstructed using DGS methods. The manus and feet are loose figments at present. Despite its predatory nature, note the reduction in canines, a clade trait.

Figure 4. Repenomamus reconstructed using DGS methods. The manus and feet are loose figments at present. Despite its predatory nature, note the reduction in canines, a clade trait.

The skull of Yanoconodon
(Fig. 2) can be largely, but not completely, reconstructed based on the visible bones. The skull is low and wide and without the typical constriction anterior to the jugals. The anterior teeth are large and spike-like while the posterior teeth are molariform. Large teeth typically require deep roots and deep bones to house those roots. The mandibles are as long as the skull. The small orbits are far forward on the skull and the temporal fenestra are correspondingly large.

Figure 2. The origin and radiation of stem mammals and crown mammals. Compare the LRT tree (above) to a recent cladogram by Close et al. 2015.

Figure 2. The origin and radiation of stem mammals and crown mammals. Compare the LRT tree (above) to a recent cladogram by Close et al. 2015.

With the new data on Yanocondon
several taxa within the LRT shifted places, but not far and still within the derived Cynodontia. Something about the Mammalia helped them survive several extinction events that the derived Tritylodontia (= Pseudomammalia) succumbed to. Pseudomammalia LOOK like mammals, but are not mammals. They continued to exist into the Early Cretaceous and some, like Repenomamus, were quite large.

References
Close RA, Friedman M, Lloyd GT and Benson RBJ 2015. Evidence for a mid-Jurassic adaptive radiation in mammals. Current Biology. 25(16): 2137–2142. 
Luo Z, Chen P, Li G, and Chen M 2007.
 A new eutriconodont mammal and evolutionary development in early mammals. Nature 446:15. online Nature

wiki/Yanoconodon

Reviewing old and new news from Brazil on the origin of mammals and ictidosaurs

Figure 1. Brasilodon nests with Sinoconodon as a stem mammal.

Figure 1. Here Brasilodon nests with Sinoconodon as a stem mammal (mammaliaformes).

Bonaparte et al. 2003
discovered two taxa close to the origin of mammals, Brasilodon  (Fig. 1) and Brasilitherium (Fig. 2). Originally both were considered stem mammals. In the large reptile tree (LRT, 1025 taxa, subset figure 4) Brasilodon nests with the stem mammal, Sinoconodon. However, Brasilitherium, also from the Late Triassic, nests at the base of the monotremes a clade including Akidolestes, Ornithorhynchus and Kuehneotherium. So it’s not a stem mammal. It’s a mammal. Bonaparte et al. 2003 missed that nesting due to taxon exclusion and a very interesting jaw joint that did not fit a preconceived pattern (Fig. 2 and see below).

Figure 2. Brasilitherium compared to Kuehneotherium, Akidolestes and Ornithorhynchus, the living platypus.

Figure 2. Brasilodon compared to Kuehneotherium, Akidolestes and Ornithorhynchus, the living platypus.

Bonaparte et al. 2003
nested Brasilodon between Pachygenelus and Morganucodon + Brasilitherium, basically matching the LRT which did not exclude monotremes and Sinoconodon.

The key skeletal trait
defining Mammalia (unless it has changed without my knowledge) has been the disconnection of the post dentary bones from the dentary coincident with the dentary articulating with the squamosal producing a new mammalian jaw joint and the genesis of tiny ear bones.

Note: that’s not happening yet
in Brasilitherium despite its phylogenetic nesting as a basal monotreme. In Brasilitherium the articular, a post dentary bone, still articulates with the quadrate (Fig. 2). So, going by the jaw joint, Brasilitherium is not a mammal. However, going by its phylogenetic nesting in the LRT, it is a mammal.

Figure 4. Therioherpeton nests at the base of the Mammaliaformes with Brasilodon, between Yanaconodon and Sinoconodon, not far from Megazostrodon.

Figure 3. Therioherpeton nests at the base of the Mammaliaformes with Brasilodon, between Yanaconodon and Sinoconodon, not far from Megazostrodon.

We’ve seen something similar occurring
at the origin of mammals, where amphibian-like reptiles (without reptile traits) have not been recognized as amniotes, based on their phylogenetic nesting in the LRT.

And, of course,
traditional workers still consider pterosaurs to be archosaurs based on their antorbital fenestra (by convergence), not their phylogenetic nesting (first documents in Peters 2000) in the LRT which solves earlier taxon exclusion problems by introducing a wider gamut of candidate sister taxa.

Th late appearance of the now convergent mammalian jaw joints
after the phylogenetic origin of mammals helps explain the two sites for ear bones in monotremes (below and medial to the posterior dentary) versus in therians (posterior to the jaw joint).

Tooth count
Basal monotremes have more teeth than any other mammals. Derived monotremes, like the living platypus and echidna, have fewer teeth, with toothless anterior jaws. This is a pattern of tooth gain/tooth loss we’ve seen before in other toothless taxa like Struthiomimus.

Recently, Bonaparte and Crompton 2017
concluded that ictidosaurs (Pachygenelus and kin) originated from more primitive procynosuchids rather than probainognathids. Pachygenelus likewise has a squamosal dentary contact, but it also retains a quadrate/articular contact as a transitional trait. They write: “We suggest a revision to the overwhelmingly accepted view that morganucodontids arose from probainognathid non- mammalian cynodonts (sensu Hopson & Kitching 2001). We suggest two phylogenetic lines, one leading from procynosuchids to ictidosaurs and the other from procynosuchids to epicynodonts and eucynodonts. One line evolves towards the mammalian condition, with a loss of circumorbital bones prefrontal, postfrontal, and postorbital), retention of an interpterygoid vacuity, a slender zygomatic arch, dentary/squamosal contact, and a long snout. The second evolves towards advanced non-mammalian cynodonts and tritylodontids with loss of the interpterygoid vacuity (present in juveniles), formation of a strong ventral crest formed by the pterygoids and parasphenoid, a very deep zygomatic arch, a tall dentary, and a short and wide snout.”

Talk about heretical!
Unfortunately, with the present taxon list, the LRT does not concur with Bonaparte and Crompton 2017, but instead recovers a more conventional lineage (Fig. 4).

Ictidosauria according to Bonaparte and Crompton:
The diagnostic features of Ictidosauria are as follows:

  1. absent postorbital arch, postorbital, and prefrontal;
  2. a slender zygomatic arch with a long jugal and short squamosal;
  3. a dorsoventrally short parietal crest and transversally wide braincase;
  4. interpterygoid vacuity;
  5. ventral contact of the frontal with the orbital process of the palatine;
  6. an unfused lower jaw symphysis;
  7. a well-developed articular process of the dentary contacting the squamosal;
  8. and a petrosal promontorium.
Figure 5. Basal Cynodont/Mammal cladogram focusing on the nesting of Brasilodon and Brasilitherium in the LRT.

Figure 4. Basal Cynodont/Mammal cladogram focusing on the nesting of Brasilodon and Brasilitherium in the LRT.

Therioherpeton (Bonaparte and Barbierena 2001; Fig. 3) also enters the discussion as a stem mammal.

Therioherpetidae according to Bonaparte and Crompton:
share several features with mammaliaforms:

  1. a slender zygomatic arch
  2. squamosal dentary contact
  3. unfuseddental symphysis
  4. petrosal promontorium
  5. transversely narrow postcanines with axially aligned cusps and an incipient cingulum
  6. and a transversely expanded brain case
  7. Therioherpetidae lack procumbent first lower incisors occluding between the first upper incisors
  8. lack an edentulous tip of the premaxilla
  9. and lack transversely widened postcanines

According to the Bonaparte team
Three distinct groups have been included in Mammaliformes.

  1. Morganucodon, Megazostrodon and Sinoconodon;
  2. Docodonta
  3. Haramiyids such as Haramiyavia

They report,
“Brasilitherium is closer to the first group than the more derived second and third groups. Brasilitherium is almost identical to Morganucodon, except that the latter has a mammalian tooth replacement pattern (single replacement of the incisors, canines, and premolars, and no replacement of the molars), double rooted molars, and the orbital flange of the palatine forms a medial wall to the orbit (Crompton et al. 2017).”

“Several features present in Procynosuchus are absent in probainognathids (sensu Hopson & Kitching 2001), but present in Ictidosauria.

  1. Interpterygoid vacuities (present only in juvenile probainognathids);
  2. a slender zygomatic arch;
  3. incisiforms present at the junction of premaxilla and maxilla;
  4. a low and elongated dentary;
  5. and an unfused lower jaw symphysis.”

Hopefully it will be seen as a credit to the LRT 
that it nested each new taxon about where the three Bonaparte teams nested them (sans the unusual Procynosuchus hypothesis), only refined a bit with the addition of several overlooked monotreme taxa, several of which have similar (to Procynosuchus) low, long skulls and rather low-slung post-crania.

Refrerences
Bonaparte JF and Barbierena MC 2001. On two advanced carnivorous cynodonts from the Late Triassic of Southern Brazil. Bulletin of the Museum of Comparative Zoology 156(1):59–80.
Bonaparte JF, Martinelli AG, Schultz CL and Rubert R 2003. The sister group of mammals: small cynodonts from the Late Triassic of Southern Brazil. Revista Brasileira de Paleontologia 5:5-27.
Bonaparte JF and Crompton AW 2017. Origin and relationships of the Ictidosauria to non-mammalian cynodonts and mammals. Historical Biology. https://doi.

 

Is Phascolotherium a basal mammal? Perhaps not…

Yesterday we looked at the origin of mammals and noted the Rowe 1988 considered the fossil mandible Phascolotherium bucklandi (Middle Jurassic; Owen 1838; Fig. 1) one of the earliest known mammals. Unfortunately, the mandible specimen does not have enough traits to nest Phascolotherium in the large reptile tree (LRT, 1011 taxa) with complete resolution.

Nevertheless,
that doesn’t stop one from visually comparing Phascolotherium to more complete taxa.

Figure 1. Phacolotherium compared to the tritylodontid Jeholodens.

Figure 1. Phacolotherium compared to the tritylodontid Jeholodens. The smaller Jeholodens image is to scale with the much larger Phacolotherium specimen.

There’s a pretty good match for Phascolotherium
with Jeholodens  (Ji et al. 1999); non-mammalian cynodont/tritylodontid/mammaliaform known from the Middle Cretaceous. The Jeholodens mandible is smaller than Phascolotherium, It has an unerupted 4th molar, which would indicate immaturity if it was a mammal. Only mammals do not replace molars.

Of Jeholodens
Ji et al. 1999 reported, “The postcranial skeleton of this new triconodont shows a mosaic of characters, including a primitive pelvic girdle and hindlimb but a very derived pectoral girdle that is closely comparable to those of derived therians. Given the basal position of this taxon in mammalian phylogeny, its derived pectoral girdle indicates that homoplasies (similarities resulting from independent evolution among unrelated lineages) are as common in the postcranial skeleton as they are in the skull and dentition in the evolution of Mesozoic mammals.”

There’s a postscript
Take another look at the mandible of Jeholodens (Fig. 1). Note the giant incisor 1 and the robust jaw articulation. Where else do we see this combination in small mammals? In Multituberculata and Haramiyidae, but both nest with rodents, plesiadapids and carpolesteids in the LRT. Traditional cladograms nest Multituberculata and Haramiyidae either before Mammalia or between monotremes and therians as very basal mammals. I have long wondered, if this was so, which basal pre-mammals or mammals look most like multituberculates and might therefore be most closely related? Could it be Jeholodens? So it was time for a test. Shifting the multituberculates to Jeholodens currently adds 34 steps to the LRT. Let’s see what happens when multis are re-scored with prejudice toward Jeholodens

So what happened?
The multis and haramiyids did not shift. The tree topology did not change. Apparently any resemblance between Jeholodens and these two clades must have been by convergence. Or the amount of convergence is overtaking the true relationship. Since everything in science is provisional we’ll keep testing.

References
Ji Q, Luo Z and Ji S 1999. A Chinese triconodont mammal and mosaic evolution of the mammalian skeleton. Nature 398:326-330. online.
Owen R 1838
. On the jaws of the Thylacotherium prevostii (Valenciennes) from Stonesfield. Proceedings of the Geological Society of London 3, 5–9.

The Origin of Mammals: Rowe 1988

Rowe 1988
provided a list of skeletal traits found in mammals not found in their proximal outgroups. Here they are broken down into digestible categories. Noteworthy are the many traits associated with improvements and refinements to hearing and smelling. Noticeable by their absence are any dental traits.

Facial

  1. Premaxilla internasal process absent (external nares confluent
  2. Ethmoid and maxillary turbinals ossified
  3. Internasal septum ossified
  4. Ossified quadratojugal absent
  5. Sclerotic ossicle absent

Palatal

  1. Ectotympanic horizontal (former reflected lamina rotates from vertical
  2. Squamosal suspensorial notches absent – sites of former connections to quadrate and quadratojugal
  3. Cribiform plate (ethmoid ossifies below olfactory bulbs)
  4. Pterygoid transverse process vestigial (muscles now fill the gap)
  5. Tegmen tympani (thin plate of bone spread over the cochlear capsule forming a new side wall for the cranium)
  6. Hyoid arch evolves to become petrosal bridge

Occipital

  1. Occipital condyles expanded upwards and laterally, far apart from one another
  2. Hindbrain greatly expanded overlies fenestrae vestibuli
  3. Paroccipital process directed ventrally (no longer sloping ventrolaterally)
  4. Pneumatic mastoid process (no longer solid)
  5. Styloid process – no longer a separate bone, the stylohyal fuses the otic capsule, joining the paroccipital process
  6. Craniomandibular joint positioned anterior to fenestra vestibuli (hearing organ opening)

Mandible

  1. Craniomandibular joint formed only by squamosal and dentary
  2. Meckelian sulcus (trough) enclosed – when open it held the post dentary elements
  3. Coronoid bone vestigial or absent – the dentary takes over
  4. Splenial vestigial or absent
  5. Articular, prearticular, surangular and angular suspended from the skull (as tiny ear bones and ectotympanic bulla respectively)

Axial

  1. Proatlas not ossified
  2. Atlas intercentrum and neural arches fused to form one ring-like bone, vertebra #1.
  3. Atlas rib absent (actually fused to the atlas)
  4. Axis prezygopophyses absent
  5. Postaxial cervical ribs fused to vertebrae

Appendicular

  1. Styloid processes on dstial ends of radius, tibia and fibula
  2. Patella present along with patellar facet on femur
  3. Entocuneiform–Hallucial (distal tarsal 1 and m1.1) articulation saddle-shaped permitting greater mobility
  4. Secondary ossifications on long bones and girdles – ossified joints
  5. Flexor sesamoids

Under this guidance
and prior to the use of software in cladisitic analysis Rowe 1988 indicated that
“Morganucodontidae, Kuehneotherium, Dinnetherium, Sinoconodon and Haramiyidae can no longer be considered mammals.” In Rowe’s tree Multituberculata nest between monotremes and metatherians. (Contra Novacek 1997, who nested that clade outside the Mammalia.)

The LRT does not agree with parts of this topology
In the LRT haramiyidans nest with multituberculates, both with rodents. There are no pre-rodent, pre-placental or pre-mammal taxa with such derived traits. Attempts to put a cynodont-like middle ear on the multituberculate Megaconus are largely the product of hope, bias and imagination, not data.

Remember
Living monotremes have tiny ear bones below and internal to the mandible, distinct from placentals and marsupials that have tiny ear bones just posterior the jaw joint. This indicates that monotremes had a separate, but convergent (parallel) evolutionary history with regard to the tiny ear bones. In the LRT. Kuehneotherium nests at the base of the monotremes and thus within Mammalia, at its base. Based on the very derived character of all monotremes, including Kuehneotherium, the very first mammals had a much earlier origin.

According to Rowe 1988
Phascolotheriium bucklandi
(Middle Jurassic, Owen 1838, Clemens et al. 1977) is the oldest known mammal.  Amphitherium (de Blainville 1838) is from the same strata. Both were discovered within the first few decades of modern British paleontology. Unfortunately there are not enough traits in Phascolotherium to nest it in the LRT without massive loss of resolution.

References
Butler P M Clemens, W. A. (2001). Dental Morphology of the Jurassic Holotherian Mammal Amphitherium, with a Discussion of the Evolution of Mammalian Post-Canine Dental Formulae. Palaeontology. 44 (1): 1–20.
Novacek MJ 1997. Mammalian evolution: An early record bristling with evidence. Current Biology 7(8):pR489–R491. DOI: http://dx.doi.org/10.1016/S0960-9822(06)00245-4 
Owen R 1838.
On the jaws of the Thylacotherium prevostii (Valenciennes) from Stonesfield. Proceedings of the Geological Society of London 3, 5–9.
Rowe T 1988.
Definition, diagnosis, and origin of Mammalia. Journal of Vertebrate Paleontology 8(3):241-264.