Karaurus and the origin of frogs + salamanders

Figure 1. Karaurus in situ. About the size of a living salamander.

Figure 1. Late Jurassic Karaurus in situ. About the size of a living salamander.

Karaurus sharovi (Ivachnenko 1978; Late Jurassic; Figs. 1, 2) nests with Celtedens (Fig. 3) in the large reptile tree (LRT, 1467 taxa; Fig. 4)  and resembled living salamanders (Fig. 5) in size, shape and lifestyle. Here (Fig. 2) certain skull bones are reidentified. The orbit was confluent with an upper + lateral temporal fenestra that appeared by the loss of the posterior circumorbital bones.

Figure 2. Karaurus drawing from Carroll 1988, originally from Ivanchenko 1978, photo of same, DGS of same. Colors standard. Some re-identify bones. Hypothetical eyeball added. It does not have to fill the orbit, but it could.

Figure 2. Karaurus drawing from Carroll 1988, originally from Ivanchenko 1978, photo of same, DGS of same. Colors standard. Some re-identify bones. Hypothetical eyeball added. It does not have to fill the orbit, but it could. The former squamosal is a tabular + supratemporal. The lacrimal and prefrontal are not fused. Postparietals are present.

Post circumorbital bones are also missing,
in Celtedens (Fig. 3). distinct from frogs, like Rana, and salamanders, like Andrias (Fig. 5).

Figure 3. Celetendens is the closest relative to Karaurus in the LRT.

Figure 3. Celetendens is the closest relative to Karaurus in the LRT.

FIgure 2. Subset of the LRT focusing on lepospondyls including salamanders and frogs.

Figure 4. Subset of the LRT focusing on lepospondyls including salamanders and frogs.

The previous illustration of the giant Chinese salamander skull
(genus: Andrias; Fig. 5) is here updated based in new understandings of homologous bumps and sutures.

Figure 3. Revised skull of Andrias japonicas, the giant Chinese salamander. This was informed by recent studies of the mudpuppy, Necturus.

Figure 3. Revised skull of Andrias japonicas, the giant Chinese salamander. This was informed by recent studies of the mudpuppy, Necturus.


References
Ivanchenko KF 1978. Urodelans from the Triassic and Jurassic of Soviet Centra Asia. Paleontological Journal 12(3):362–368.

Perryella and convergence in basal tetrapod clades

A recent paper by Schoch 2018,
once again stirs confusion into the phylogeny of basal tetrapods due to taxon exclusion. Schoch reports, “the enigmatic taxon Perryella (Fig. 1) is found to nest just outside Dissorophoidea (phylogenetic defintion), but shares a range of synapomorphies with this clade.” Schoch derives tiny Perryella from the much larger taxa, Trimerorhachis and Sclerocephalus apparently without testing a wide gamut of taxa (as in the LRT), but relying on a wide consensus of tradition, omitting several key taxa.

Figure 1. Perryella is not a transitional taxon in the LRT, but a terminal taxon nesting with Dendrerpeton.

Figure 1. Perryella is not a transitional taxon in the LRT, but a terminal taxon nesting with Dendrerpeton.

A little Perryella history:
In Carlson 1987 the classification of Perryella was uncertain because it shared features with two groups, Trimerorhachidae and Dissorophoidea, which were thought to be distantly related. In the LRT those taxa are indeed distantly related.

In Ruta and Bolt 2006, a phylogenetic analysis placed Perryella between trimerorhachids and other dvinosaurs (basal tetrapod in Ruta and Bolt that includes lepospondyls like Cacops, Fedexia, Dissorophus, frogs, salamanders and caecilians, all taxa nesting in the lepospondyls in the LRT). Here all similarities with trimerorhachids are convergent.

Figure 1. Trimerorhachis and kin to scale. Here are Panderichthys, Tiktaalik, Ossinodus, Dvinosaurus, Acanthostega, Batrachosuchus and Gerrothorax. Maybe those tabular horns on Acanthostega are really supratemporal horns, based on comparisons to related taxa.

Figure 2. Trimerorhachis and kin to scale. Here are the players in today’s blogpost: Panderichthys, Tiktaalik, Ossinodus, Dvinosaurus, Acanthostega, Batrachosuchus and Gerrothorax. Maybe those tabular horns on Acanthostega are really supratemporal horns, based on comparisons to related taxa. These taxa are not related to lepospondyls (including frogs) despite the convergent appearance.

As you’ll note in the cladogram below
Trimerorhachis and Dvinosaurus nest together in the first large (15 tested taxa, Fig. 3) clade of basal tetrapods in the LRT, the trimerorhachids. Meanwhile Perryella nests several nodes away with Dendrerpeton in the lepospondyl clade of the LRT.

Figure 1. Subset of the LRT focusing on basal tetrapods, colorized according to chronology. Note the wide dispersal of Early Carboniferous taxa, suggesting a Late Devonian radiation as yet largely undiscovered.

Figure 3. Subset of the LRT focusing on basal tetrapods, colorized according to chronology. Note the wide dispersal of Early Carboniferous taxa, suggesting a Late Devonian radiation as yet largely undiscovered. Perryella is not listed here, but nests with Dendrerpeton.

By convergence
Trimerorhachis and Perryella both have wide circular interpterygoid vacuities (Figs. 1, 2) and a largely similar set of skull bones. The difference is in the details and you don’t find convergence (if present) unless you test a wide gamut of candidate taxa.

Figure 1. Trimerorhachis was considered a dvinosaurian temnospondyl. Here both Trimerorhachis and Dvinosaurus nest low on the basal tetrapod tree, close to the fin/finger transition.

Figure 4. Trimerorhachis was considered a dvinosaurian temnospondyl. Here both Trimerorhachis and Dvinosaurus nest low on the basal tetrapod tree, close to the fin/finger transition, far from Perryella and the lepospondyls.

A bad traditional paradigm
is at the bottom of this problem. According to Ruta and Bolt (2006), “Whereas the three extant clades (frogs, salamanders, and caecilians) are generally small creatures with feeble skeletons, most of which feed on small invertebrates, their likely stem group, Paleozoic temnospondyls, encompasses 1–2m long, heavily ossified predators. The evolutionary transition between the Paleozoic giants and the dwarfed modern forms has long been sought among the Dissorophoidea, a speciose clade of mainly terrestrial and presumably insect-eating Carboniferous–Triassic temnospondyls that were usually smaller and had less massive skeletons than their fish-eating fellows, but alternative scenarios are still debated.”

Figure 2. Utegenia nests as a sister to Diplovertebron.

Figure 5. Utegenia nests at the base of the Lepospondyli and the Lissamphibia in the LRT. It is also the proximal sister to the Reptilia in the LRT. Do not exclude this taxon from your basal tetrapod studies!

In the LRT
(Fig. 3) there are no huge, heavily ossified ancestors to the lepospondyls and lissamphibians. Rather Ossinodus is the largest ancestor in the lissamphibian line. Ruta and Bolt report, “Watson (1940) wrote a review paper on the origin of anurans in which he sought the ancestry of frogs among amphibamids, notably the tiny, lightly built Amphibamus grandiceps.” This is supported and confirmed by the LRT. They continue, “The discovery of Eocaecilia and Gerobatrachus brought an end to the long-practiced separate treatment of temnospondyls and lissamphibians, because both Eocaecilia and Gerobatrachus retained dermal bones that are not present in any extant lissamphibian, but are well known from temnospondyls.” In the LRT basal lepospondyls, like Utegenia (Fig. 5) which is not a seymouriamorph, but close!) retain dermal bones not present in extant lissamphibians. A keyword search of Ruta and Bolt failed to bring up the taxon, ‘Utegenia.’

Figure 7. Subset of the LRT including Perryella.

Figure 6. Subset of the subset in figure 3 of the LRT that now includes Perryella.

Once again,
that’s taxon exclusion crimping otherwise well-considered and serious studies, like Ruta and Bolt 2006.

References
Carlson KJ 1987. Perryella, a new temnospondylous amphibian from the Lower Permian of Oklahoma. Journal of Paleontology. 61 (1): 135–147.
Ruta M and Bolt JR 2006. A reassessment of the temnospondyl amphibian Perryella olsonifrom the Lower Permian of Oklahoma. Earth and Environmental Science Transactions of the Royal Society of Edinburgh. 97 (2): 113–165.

wiki/Dendrerpeton
wiki/Tersomius
wiki/Perryella

 

Fedexia joins the LRT

Berman et al. 2010
brought us a new trematopid amphibian, Fedexia striegeli (Figs. 1-3; CM 76867; late Carboniferous; 300 mya; est. .6m long). Not quite matching the Berman et al. study, the large reptile tree (LRT, 1326 taxa) nests Fedexia at the base of the clade including Tambachia and Ecolsonia. This appear to be due to taxon exclusion

Figure 1. Fedexia skull in several views.

Figure 1. Fedexia skull in several views from Berman et al. 2018. 11.5 cm in length.

Firsthand observation
initially mistook the exposed teeth for a fern frond. The naris is elongated, covering a majority of the lateral rostrum. The orbit appears to be taller than wide, but when calipers are placed on it, the horizontal and vertical are identical. A small notch appears between the ventral premaxilla and maxilla. The lateral premaxillary teeth are enlarged to fangs.

Figure 1. Fedexia overall, from Berman et al., 2010.

Figure 2. Fedexia overall, from Berman et al., 2010.

Sister taxa
like Ecolsonia and Tambachia (Fig. 3) are similar in size and overall morphology.

Figure 3. Fedexia to scale alongside sisters Tambachia and Ecolsonia.

Figure 3. Fedexia to scale alongside sisters Tambachia and Ecolsonia. Note the large nares with a long lacrimal at the ventral margin, The quadratojugal may enclose all three taxa as it does in Ecolsonia.

Figure 4. Subset of the LRT focusing on amphibians including the frog, Rana. Fedexia nests here with Tambachia and Ecsolina.

Figure 4. Subset of the LRT focusing on amphibians including the frog, Rana and the salamander, Andrias. Fedexia nests here with Tambachia and Ecolsonia.

References
Berman DS, Henrici AC, Brezinski DK and Kollar AD 2010. A new trematopid amphibian (Temnospondyli: Dissorophoidea) from the Upper Pennsylvanian of western Pennsylvania: earliest record of terrestrial vertebrates responding to a warmer, drier climate PDF. Annals of Carnegie Museum. 78 (4): 289–318. doi:10.2992/007.078.0401

https://en.wikipedia.org/wiki/Fedexia

Lethiscus: oldest of the tetrapod crown group?

Figure 1. Lethiscus stock skull, drawing from Pardo et al. 2017 and colorized here.

Figure 1. Lethiscus stocki skull, drawing from Pardo et al. 2017 and colorized here. Note the loss of the postfrontal and the large orbit. Pardo et al. nest this taxon between Acanthostega and Pederpes in figure 3. There is very little that is plesiomorphic about this long-bodied legless or virtually legless taxon. Thus it should nest as a derived taxon, not a basal plesiomorphic one.

Pardo et al. 2017
bring us new CT scan data on Lethiscus stocki (Wellstead 1982; Viséan, Early Carboniferous, 340 mya) a snake-like basal tetrapod related to Ophiderpeton (Fig. 2) in the large reptile tree (LRT, 1018 taxa), but with larger orbits.

Figure 1. Ophiderpeton (dorsal view) and two specimens of Oestocephalus (tiny immature and larger mature).

Figure 2. Ophiderpeton (dorsal view) and two specimens of Oestocephalus (tiny immature and larger mature).

Lethiscus is indeed very old (Middle Viséan)
but several reptiles are almost as old and Tulerpeton, a basal amniote, comes from the even older Late Devonian. So the radiation of small burrowing and walking tetrapods from shallow water waders must have occurred even earlier and Tulerpeton is actually the oldest crown tetrapod.

Figure 2. Pardo et al. cladogram nesting Lethiscus between vertebrates with fins and vertebrates with fingers. They also nest microsaurs as amniotes (reptiles). None of this is supported by the LRT.

Figure 3. Pardo et al. cladogram nesting Lethiscus between vertebrates with fins and vertebrates with fingers. They also nest microsaurs as amniotes (reptiles), resurrecting an old idea not supported in the LRT. Actually not much of this topology is supported by the LRT.

Pardo et al. nested Lethicus
between Acanthostega (Fig. 4) and Pederpes (Fig. 3) using a matrix that was heavily weighted toward brain case traits. Ophiderpeton and Oestocephalus (Fig. 2) were not included in their taxon list, though the clade is mentioned in the text: “Overall, the skull morphology demonstrates underlying similarities with the morphologies of both phlegethontiid and oestocephalid aïstopods of the Carboniferous and Permian periods.” So I’m concerned here about taxon exclusion. No other basal tetrapods share a lateral temporal fenestra or share more cranial traits than do Lethiscus, OphiderpetonOestocephalus and RileymillerusAll bones are identified here as they are in Pardo et al. so bone ID is not at issue. I can’t comment on the Pardo team’s braincase traits because so few are examined in the LRT. Dr. Pardo said they chose taxa in which the brain case traits were well known and excluded others.

Figure 4. Acanthostega does not have much of a neck.

Figure 4. Acanthostega is basal to Lethiscus in the Partdo et al. tree.

Pardo et al. considered
the barely perceptible notch between the tabular and squamosal in Lethiscus (Fig. 1) to be a “spiracular notch” despite its tiny size. I think they were reaching beyond reason in that regard. They also note: “The supratemporal bone is an elongate structure that forms most of the dorsal margin of the temporal fenestra, and is prevented from contacting the posterior process of the postorbital bone by a lateral flange of the parietal bone.” The only other taxon in the LRT that shares this morphology is Oestocephalus, Together they nest within the Lepospondyli (Fig. 3) in the LRT. I think it is inexcusable that Pardo et al. excluded  Ophiderpeton and Oestocephalus. 

Figure 4. Subset of the LRT with the addition of Lethiscus as a sister to Oestocephalus, far from the transition between fins and feet. Here the microsaurs are not derived from basal reptiles

Figure 4. Subset of the LRT with the addition of Lethiscus as a sister to Oestocephalus, far from the transition between fins and feet. Here the microsaurs are not derived from basal reptiles

Summarizing,
Pardo et al. report, “The braincase and its dermal investing bones [of Lethiscus] are strongly indicative of a very basal position among stem tetrapods.”  and “The aïstopod braincase was organized in a manner distinct from those of other lepospondyls but consistent with that seen in Devonian stem tetrapods.” It should also be noted that the skull, body and limbs were likewise distinct from those of other lepospondyls, yet they still nest with them in the LRT because no other included taxa (1018) share more traits. ‘Distinct’ doesn’t really cut it, in scientific terms. As I mentioned in an email to Dr. Pardo, it would have been valuable to show whatever bone in Lethiscus compared to its counterpart in Acanthostega and Oestocephalus if they really wanted to drive home a point. As it is, we casual to semi-professional readers are left guessing.

Pardo et al. references the clade Recumbirostra.
Wikipedia lists a number of microsaurs in this clade with Microbrachis at its base, all within the order Microsauria within the subclass Leposondyli. Pardo et al. report, “Recumbirostrans and lysorophians are found to be amniotes, sister taxa to captorhinids and diapsids.” The LRT does not support this nesting. Pardo et al. also report, “This result is consistent with early understandings of microsaur relationships and also reflects historical difficulties in differentiating between recumbirostrans and early eureptiles.” Yes, but the later studies do not support that relationship. Those early understandings were shown to be misunderstandings that have been invalidated in the LRT and elsewhere, but now resurrected by Pardo et al.

Ophiderpeton granulosum (Wright and Huxley 1871; Early Carboniferous–Early Permian, 345-295mya; 70cm+ length; Fig. 2, dorsal view)

Oestocephalus amphiuminus (Cope 1868; Fig. 2,  lateral views) is known from tiny immature and larger mature specimens.

Figure 7. A series of Phlegethontia skulls showing progressive lengthening of the premaxilla and other changes.

Figure 5. A series of Phlegethontia skulls showing progressive lengthening of the premaxilla and other changes.

A side note:
The recent addition of several basal tetrapod taxa has shifted the two Phlegethontia taxa (Fig.5) away from Colosteus to nest with Lethiscus and Oestocephalus, their traditional aistopod relatives. That also removes an odd-bedfellow, tiny, slender taxon from a list of large robust stem tetrapods.

References
Pardo JD,Szostakiwskyj M, Ahlberg PE and Anderson JS 2017. Hidden morphological diversity among early tetrapods. Nature (advance online publication) doi:10.1038/nature22966
Wellstead CF 1982. A Lower Carboniferous aïstopod amphibian from Scotland. Palaeontology. 25: 193–208.
Wright EPand Huxley TH 1871. On a Collection of Fossil Vertebrata, from the Jarrow Colliery, County of Kilkenny, Ireland. Transactions of the Royal Irish Academy 24:351-370

wiki/Acherontiscus
wiki/Adelospondylus
wiki/Adelogyrinus
wiki/Dolichopareias
wiki/Ophiderpeton
wiki/Oestocephalus
wiki/Rileymillerus
wiki/Acherontiscus

Diplovertebron vs. Gephyrostegus

Updated June 13, 2017 with the realization that Watson’s 1926 Diplovertebron is the same specimen as Gephyrostegus watsoni (bohemicus). 

This blog had its genesis in a reader comment
that considered the taxon, Diplovertebron congeneric with the coeval Gephyrostegus bohemicus and G. watsoni (Fig. 1), echoing earlier authors. Although there may be some confusion here (see below), and several specimens have been attributed to Gephyrostegus by various authors, the specimen illustrated and labeled by Watson 1926 (Fig. 1) is not one of them, unless it was drawn very poorly. If anyone has in situ skeletal material, please send it along for an update.

Gleaning data from several papers, provided that update. 

Part of my confusion
lies in the Wikipedia article on Diplovertebron, which states it was 60 cm in length, at least 5x larger than the one illustrated by Watson and far larger than any of its sister taxa. There may be a paper I am unfamiliar with at present that clarifies the matter.

So far, I have not found it. 60 cm may be an error.

The Westphalian (310 mya) tetrapods
include some reptile-like amphibians and some amphibian-like reptiles. This strata is 30 million years younger than the Viséan, where members from the first great radiation of reptiles can be found. Several late-survivors of earlier radiations can still be found in Westphalian strata.

Earlier G. watsoni nested among basal archosauromorpha, apart from G. bohemicus at the base of the Reptilia and separated by Eldeceeon. So the three taxa in figure 1 are separated from each other by intervening genera and therefore cannot be congeneric.

With present data, flawed though it may be
Diplovertebron nests in the large reptile tree (LRT) with Utegenia, at the base of the Lepospondyli, the clade that ultimately gives us frogs, like Rana, salamanders, like Andrias, and caecilians, like Dermophis.

Figure 1. Diplovertebron, Gephyrostegus bohemicus and Gephyrostegus watsoni. None of these are congeneric.

Figure 1. Diplovertebron, Gephyrostegus bohemicus and Gephyrostegus watsoni. to scale  None of these are congeneric. That’s because Watson’s drawing (upper left) was poorly drafted. 

Revised backstory:
Diplovertebron punctatum (Fritsch 1879, Waton 1926; DMSW B.65, UMZC T.1222a; Moscovian, Westphalian, Late Carboniferous, 300 mya) aka:  Gephyrostegus watsoniBrough and Brough 1967) and  Gephyrostegus bohemicus (Carroll 1970; Klembara et al. 2014) after several name changes perhaps this specimen should revert back to its original name as it nests a few nodes away from Gephyrostegus.

Derived from a sister to EldeceeonDiplovertebron was basal to the larger Solenodonsaurusand the smaller BrouffiaCasineria and WestlothianaDiplovertebron was a contemporary ofGephyrostegus bohemicus, Upper Carboniferous (~310 mya), so it, too, was a late survivor.

Overall smaller and distinct from Eldeceeon, the skull of Diplovertebron had a shorter rostrum, larger orbit and greater quadrate lean. The dorsal vertebrae formed a hump and had elongate spines. The hind limbs were much longer than the forelimbs. The tail is incomplete, but appears to have been short and deep.

Seven sphere shapes were preserved alongside this specimen. They may be the most primitive amniote eggs known.

Watson 1926 attempted a freehand reconstruction (see below) that was so different from this specimen that for a time it nested as a separate taxon, now deleted.

References
Brough MC and Brough J 1967. The Genus Gephyrostegus. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 252 (776): 147–165. doi:10.1098/rstb.1967.0006
Carroll RL 1970. 
The Ancestry of Reptiles. Philosophical Transactions of the Royal Society London B 257:267–308. online pdf
Fritsch A 1879. Fauna der Gaskohle und der Kalksteine der Permformation “B¨ ohmens. Band 1, Heft 1. Selbstverlag, Prague: 1–92.
Jaeckel O 1902. Über Gephyrostegus bohemicus n.g. n.sp. Zeitschrift der Deutschen Geologischen Gesellschaft 54:127–132.
Klembara J, Clack J, Milner AR and Ruta M 2014. Cranial anatomy, ontogeny, and relationships of the Late Carboniferous tetrapod Gephyrostegus bohemicus Jaekel, 1902. Journal of Vertebrate Paleontology 34:774–792.
Ruta M, Jeffery JE and Coates MI 2003. A supertree of early tetrapods. Proceedings of teh Royal Society, London B (2003) 270, 2507–2516 DOI 10.1098/rspb.2003.2524 online pdf
Watson DMS 1926. VI. Croonian lecture. The evolution and origin of the Amphibia. Proceedings of the Zoological Society, London 214:189–257.

wiki/Gephyrostegus
wiki/Diplovertebron

 

Correcting mistakes on Brachydectes

Perhaps one of the most difficult skulls
in all of the Tetrapoda is Brachydectes newberryi ((Wellstead 1991; Latest Carboniferous, Fig. 1). Many bones are in their standard positions. However, the bones posterior to the orbit have moved around, fused or become lost. That’s where the trouble begins.

Figure 1. Brachydectes newberryi has some difficult to identify bones just aft of the orbit due to fusion and reduction. Brachydectes (Laysorophus) elongatus (Fig. 2) provides Rosetta Stone clues as to what is happening in this clade.

Figure 1. Brachydectes newberryi has some difficult to identify bones just aft of the orbit due to fusion and reduction. Brachydectes (Laysorophus tricarinatus) elongatus (Fig. 2) provides Rosetta Stone clues as to what is happening in this clade. Note the tabulars may be more of a square shape, as Pardo and Anderson drew, but did not identify as such. 

Finding data for
Brachydectes elongatus (formerly Lysorophus tricarinatus; Cope 1877, Carroll and Gaskill  1978, Wellstead 1991; Permian, 250 mya; AMNH 6172 ) provides many needed clues as to the identity of the mystery bones.  The data comes from Carroll and Gaskill 1978 and Wellstead 1991. Earlier hypotheses included errors that I want to correct now. Based on phylogenetic bracketing these taxa nest with the caecilians Eocaecilia and Dermophis all derived from elongate microsaurs close to Archerontiscus, Oestocephalus, Adelogyrinus, Adelospondylus and Microbrachis in the large reptile tree (LRT). Unfotunatey, the latter taxa do not reduce the cheek and temple elements. So they were of little help.

Figure 2. Brachydectes elongatus (Lysorophus tricarinatus) from Carroll and Gaskill 1978 and Wellstead 1991 with colors and new bone identities added.

Figure 2. Brachydectes elongatus (Lysorophus tricarinatus) from Carroll and Gaskill 1978 and Wellstead 1991 with colors and new bone identities added.

As you can see
in figure 2, most of the skull roofing bones and anterior skull bones of Brachydectes elongatus are in their standard spots and are therefore uncontroversial. So let’s nail down the rest of the bones with a parsimony check.

Figure 3. Brachydectes species compared to scale and not to scale. Size alone might warrant generic distinction.

Figure 3. Brachydectes species compared to scale and not to scale. Size alone might warrant generic distinction.

  1. No sister taxa have a large supraoccipital that contacts the parietals and extends over the skull roof. Here that light tan median bone is identified as a set of fused post parietals, as in sister taxa. A more typical supraoccipital may be peeking out as a sliver over the foramen magnum (spinal nerve opening, beneath the fused postparietals.
  2. No sister taxa separate the postparietals, so those in light red are identified here as tabulars, bones which typically form the posterior rim of sister taxa skulls and often provide corners to the skull.
  3. Typcially anterior to, but this time lateral to the new tabulars are the bright green supratemporals. As in sister taxa they maintain contact with the postorbitals (yellow/amber) and parietals (lavender/light purple). They form skull corners in B. elongulatus and rise above the plane of the cranium in B. newberryi – but still act as skull corners.
  4. The jugal is completely absent (unless a sliver of it is fused to the yellow-green quadratojugal lateral to the quadrate, The maxilla posterior to the eyeball is also absent.
  5. The postfrontal is fused to the parietal, with a slender strip maintaining contact with the postfrontal.
  6. The postorbital is in its standard position at the posterior orbit. Here it is roofed over by the supratemporal, as in Microbrachis.
  7. The squamosal is the tricky bone. It appears as a separate bright magenta element in B. elongulatus, but must be absent or fused to the postorbital in B. newberryi because it is otherwise not visible. I agree with previous workers on the identity of the squamosal in B. elongatus.

Bones may fuse, drift and change shape, but their connections to other bones often remain to help identify them using phylogenetic bracketing. Of course that requires a valid phylogenetic framework, one that minimizes taxon exclusion problems. The tabulars do not trade places with the postparietals in this hypothesis. The tabulars maintain their original places, lateral to the fused postparietals, bones which fuse by convergence in other taxa. Perhaps the concept of an autapomorphic oversized supraoccipittal was the source of earlier errors.

It’s interesting
that the opisthotics are posteriorly covered by the exoccipitals. That usually does not happen in most tetrapods, but is further emphasized in the caecilians, Eocaecilia and Dermophis. In competing candidate taxa Rhynchonkos, Batropetes and Microrator, a different pattern is present with the postparietals descending to cover large portions of the occiput and the tabulars are fused or absent.

Wellstead (1991) and perhaps others
made Brachydectes elongatus and Brachydectes newberryi congeneric, but I see enough differences here to warrant separate genera.

Pardo and Anderson 2016 reported, 
“Contra the proposals of some workers, we find no evidence of expected lissamphibian synapomorphies in the skull morphology in Brachydectes newberryi, and instead recognize a number of derived amniote characteristics within the braincase and suspensorium.

Our study reveals similarities between the braincase of Brachydectes and brachystelechid recumbirostrans, corroborating prior work suggesting a close relationship between these taxa.”

Pardo and Anderson freehand
a Brachydectes newberryi skull reconstruction to supplement their CT scans, but do not label the bones in the drawing. Present are paired bones posterior to the parietals and a single median bone posterior to those. Based on their text, the bones posterior to the parietals are identified as post parietals, “as in the majority of early tetrapods.’ Unfortunately, sister taxa among the microsaurs do not have a large supraoccipital. So this bone has to be reconsidered as a post parietal, which all related taxa have arching over the foramen magnum. Pardo and Anderson do not mention supratemporals, but all sister taxa in the LRT have them.

Recumbirostra
according to Wikipedia, are lepospondyl amphibians that include a large number of microsaurs. Of course, those are not derived amniotes. The LRT nests Brachydectes within the Microsauria (which is not a paraphyletic group here). The phylogenetic topology of Recumbirostrans recovered by Glienke (2012) do not create the same topology in the LRT, perhaps due to taxon exclusion. Glienke recovers Eocaecilia close to Rhynchonkos (in the absence of Adelospondyli). In both studies Microbrachis is basal.

The process of discovery
is often the process of correcting errors. And, as you can see, I’m glad to do so when errors are detected, whether out there or in here. Apologies for earlier errors. We’re all learning and helping each other to learn here.

 

References
Carroll RL and Gaskill P 1978. The order Microsauria. American Philosophical Society Memoires 126: 211 pp.
Cope ED 1877. Description of extinct Vertebrata from the Permian and Triassic formations of the United States. Proc. Am. Philos. Soc. 17: 182-193.
Pardo JD and Anderson JS 2016. Cranial Morphology of the Carboniferous-Permian Tetrapod Brachydectes newberryi (Lepospondyli, Lysorophia): New Data from μCT. PLoS ONE 11(8): e0161823. doi:10.1371/journal.pone.0161823
Wellstead C F 1991. Taxonomic revision of the Lysorophia, Permo-Carboniferous lepospondyl amphibians. Bulletin of the American Museum of Natural History 209: 1–90.

wiki/Lysorophus
wiki/Brachydectes

Apateon and the origin of salamanders + frogs

Figure 1. Apateon overall and the skull in palatal and dorsal views. This taxon nests between Doleserpeton and Gerobatrachus in the LRT.

Figure 1. Apateon overall and the skull in palatal and dorsal views. This taxon nests between Doleserpeton and Gerobatrachus in the LRT.

Apateon pedestris (von Meyer 1844, Early Permian, 295mya; 12 cm in length) was long considered a temnospondyl in the family Branchiosauridae. Here Apateon nests between Doleserpeton and Gerobatrachus in the lepospondyl lineage of frogs, like Rana and salamanders like Andrias.

Resembling a small salamander with a long, laterally flattened tail, Apateon had a shorter rostrum and large orbits than Doleserpeton. The pineal opening was larger. The ilium was more erect. The pubis was missing. The ectopterygoid did not contact the maxilla and the palatine did so only with a narrow process. At present, no other taxa in the LRT (978 taxa) do this.

Small scales covered the body. Three pairs of external gills were present for underwater respiration. Many species are known, as well as a good ontogenetic series.

Anderson 2008 reported, 
“Branchiosaurs [including Apateon] are closely related to amphibamids, if not included in the latter group, and have been suggested to be closely related to salamanders because of shared similarities in the sequence of cranial ossification.”

“New transitional fossils like the stem batrachian Gerobatrachus have filled in the morphological gap between amphibamid temnospondyls and the earliest frogs and salamanders, and this portion of the lissamphibian origins question appears very well supported.”

The LRT recovers
Amphibamus much closer to the base of the lepospondyls, about 5 nodes distant from Apateon. Of course, neither are closely associated with temnospondyls in the LRT, despite the open palate, otic notch and other convergent traits.

Neotony
The apparent lack of gill-less adults among all of the apparent larval gilled specimens of Apateon was a cause of consternation for awhile. The new largest specimen (Frobisch and Schoch 2009) appears to indicate an adult specimen. It had partially interdigitating and tight sutures of the skull roof, a high degree of ossification and differentiation of the postcranium as compared to smaller larval specimens. Uncinate processes indicate that this specimen represents an adult. However, it lacks ossifications of the exoccipitals and quadrates, intercentra, and the coracoid as seen in metamorphosed specimens. Frobisch and Schoch conclude, “The anatomical evidence at hand clearly indicates that both life history strategies, metamorphosis and neoteny, were established in Paleozoic branchiosaurids.”

References
Anderson JS 2008. Focal Reviews: The Origin(s) of Modern Amphibians. Eovlutionary Biology 35:231-247.
Anderson JS et al. 2008.  
A stem batrachian from the Early Permian of Texas
and the origin of frogs and salamanders. Nature 453 (7194): 515–518.
Frobisch N and Schoch RR 2009. The largest specimen of Apateon and the life history pathway of neotony in the Paleozoic temnospondyl family Branchiosauridae. Fossil Record 12(1):83-90.
von Meyer H 1844. Briefliche Mittheilung an Prof. Bronn gerichtet. Neues Jahrbuch für Geognosie, Geologie und Petrefakten-Kunde 1844: 329-340.

wiki/Gerobatrachus
wiki/Apateon

Diplovertebron and amphibian finger loss patterns

Updated June 13, 2017 with the fact that Diplovertebron is the same specimen I earlier illustrated as Gephyrostegus watsoni. And the Watson 1926 version of Diplovertebron (Fig. 1) was so inaccurately drawn (by freehand) that the data nested is apart from the DGS tracing. Hence this post had deadly errors now deleted.

Figure 2. The gradual loss of basal tetrapod fingers. Unfortunately fingers are not known for every included taxon.

Figure 2. The gradual loss of basal tetrapod fingers. Unfortunately fingers are not known for every included taxon. Odd Tulerpeton with 6 fingers may result from taphonomic layering of the other manus peeking out below the top one. See figure 6. Mentally delete Diplovertebron from this chart. 

The presence of five manual digits
in Balanerpeton (Figs. 4, 5) sheds light on their retention in Acheloma + Cacops. There is a direct phylogenetic path between them (Fig. 2). Note that all other related clades lose a finger or more. Basal and stem reptiles also retain five fingers.

Figure 2. Utegenia nests as a sister to Diplovertebron.

Figure 3. Utegenia nests as a sister to Diplovertebron.

Distinct from the wide frontals
in Utegenia and Kotlassia,  Balanerpeton (Fig. 4) had narrower frontals like those of Silvanerpeton, a stem reptile.

Figure 4. The basal amphibian, Balanerpeton apparently has five fingers (see figure 5).

Figure 4. The basal amphibian, Balanerpeton apparently has five fingers (see figure 5).

As reported
earlier, finger five was lost in amphibians,while finger one was lost in temonospondyls. Now, based on the longest metacarpal in Caerorhachis and Amphibamus (second from medial), apparently manual digit one was lost in that clade also, distinct from the separate frog and microsaur clades. In summary, loss from five digits down to four was several times convergent in basal tetrapods.

Figure 5. DGS recovers five fingers in Balanerpeton with a Diplovertebron-like phalangeal pattern.

Figure 5. DGS recovers five fingers in Balanerpeton with a Diplovertebron-like phalangeal pattern. Two 5-second frames are shown here.

Finally, we have to talk about
Tulerpeton (Fig. 6). The evidence shows that the sixth manual digit is either a new structure – OR – all post-Devonian taxa lose the sixth digit by convergence, since they all had five fingers. Finger 6 has distinct phalangeal proportions, so it is NOT an exposed finger coincident rom the other otherwise unexposed hand in the fossil matrix.

Figure 2. Tulerpeton manus and pes in situ, reconstructed by Lebdev and Coates 1995 and newly reconstructed here.

Figure 6. Tulerpeton manus and pes in situ, reconstructed by Lebdev and Coates 1995 and newly reconstructed here. Digit 6 is either a new structure, or a vestige that disappears in all post-Devonian taxa.

References
Fritsch A 1879. Fauna der Gaskohle und der Kalksteine der Permformation “B¨ ohmens. Band 1, Heft 1. Selbstverlag, Prague: 1–92.
Kuznetzov VV and Ivakhnenko MF 1981. Discosauriscids from the Upper Paleozoic in Southern Kazakhstan. Paleontological Journal 1981:101-108.
Watson DMS 1926. VI. Croonian lecture. The evolution and origin of the Amphibia. Proceedings of the Zoological Society, London 214:189–257.

wiki/Diplovertebron

Platyhystrix: closer to Acheloma than to Cacops?

Platyhystrix was a dissorophid lepospondyl anamniote that had a dorsal sail (Figs. 1, 2 ), not quite like those  of its more famous reptilian/synapsid contemporaries, Dimetrodon and Edaphosaurus.

There must have been something in the air back then,
and those dorsal sails were there to catch it!

Figure 1. Platyhistrix skull reconstructed from slightly disassociated parts.

Figure 1. Platyhistrix skull reconstructed from slightly disassociated parts. And the Lewis and Vaughn 1965 dorsal sail, distinct from the others in figure 2. The skull here appears to have a confluent naris and antorbital finestra, as in Acheloma, but there are other bones missing there, too, like most of the maxilla.

Dissorophids are traditionally nested with
temnospondyls, but here, at the large reptile tree (LRT, now 959 taxa), they arise from a sister to the basal seymouriamorph, Utegenia and continue to be generally smaller taxa (< 60cm).

Figure 2. Other Platyhystrix specimens known chiefly from dorsal spines.

Figure 2. Other Platyhystrix specimens known chiefly from dorsal spines. That old skull from Williston 1911 is missing the central area, here imagined from the more complete specimen in figure 1.

Distinct from Acheloma
the skull of Platyhysterix does not appear to have giant palatal fangs, or such large marginal teeth. The jugal nearly separates the postorbital from the supratemporal. The postorbital is larger and much knobbier.

Like Acheloma
The rostrum may include a confluent nairs/antorbital fenestra, a constricted rostrum (in dorsal view), a naris of similar laterally wavy shape, robust premaxillary ascending processes, large tabulars and other traits relatively exclusive to these two.

A fair amount of reassembly
is required of the Platyhystrix skull. The random neural spine below the lower right jaw line allies the skull with specimens that also have long neural spines.

Figure 1. Acheloma dunni skull with a confluent antorbital fenestra and naris.

Figure 3. Acheloma dunni skull with a confluent antorbital fenestra and naris.

Wouldn’t it be interesting 
to see hatchlings and juveniles of Platyhystrix? It is widely considered, along with its double-armored kin, Dissorophus, to have been fully terrestrial. So, did these two have a swimming tadpole stage? And then develop spines and armor in adulthood? Or did they converge with reptiles, laying protected eggs on land, skipping the tadpole stage? Let’s keep an eye out for little finbacks.

References
Berman DS, Reisz RR and Fracasso MA 1981. Skull of the Lower Permian dissorophid amphibian Platyhystrix rugosus. Annals of the Carnegie Museum 50 (17):391-416.
Case EC 1911. Revision of the Amphibia and Pisces of the Permian of North America. Publ. Carnegie Inst. Washington 146:1-179.
Dilkes DW and Reisz R 1987. Trematops milleri identified as a junior synonym ofAcheloma cumminsi with a revision of the genus. American Museum Novitates 2902.
Lewis GE and Vaughn PP 1965. Early Permian vertebrates from the Cutler Formation of the Placerville area, Colorado, with a section on Footprints from the Cutler Formation by Donald Baird: U.S. Geol. Survey Prof. Paper 503-C, p. 1-50.
Williston SW 1911a. A new family of reptiles from the Permian of New Mexico. American Journal of Science 31:378-398.
Williston SW 1911b. American Permian vertebrates. University of Chicago Press: 145 pp.

wiki/Acheloma
wiki/Platyhystrix

Dermophis, an extant caecilian gets the DGS treatment

Sometimes bones disappear.
Other times bones become fused to one another. The extant caecilian Dermophis (Fig. 1) might demonstrate one or the other or both. Coloring the bones helps to interpret and explain their presence despite the absence of sutures due to fusion or loss.

Figure 1. Dermophis, the extant Mexican caecilian, with bones, even if fused to one another, identified. The quadratojugal and squamosal are absent. Black and white image from Digimorph.org. Coloring the bones makes them so much easier to read and understand.

Figure 1. Dermophis, the extant Mexican caecilian, with bones, even if fused to one another, identified. The quadratojugal and squamosal are absent. Black and white image from Digimorph.org. Coloring the bones makes them so much easier to read and understand.

Dermophis mexicanus (Mexican caecilian, Peters 1880; extant) The nasal and premaxilla are fused. The maxilla, lacrimal, prefrontal and palatine are fused. The occipital elements and the paraspheniod are fused (= Os basale). The parietal and postparietal are fused. The jugal, squamosal, postfrontal and postorbital are fused. The dentary and surangular are fused. The splenial, articular and angular are fused. The pterygoid and quadrate are fused.

The cheek bones are traditionally labeled squamosals, but that may not be the whole story here. Different from nearly all other basal tetrapods (including other amphibians), caecilians shift the jaw joint forward, creating a large retroarticular process of the posterior mandible.

Dermophis lives in humid to dry soils beneath leaf-litter, logs, banana or coffee leaves and hulls or similar ground cover. It is viviparous.

Ontogeny should tell
The true identity of skull bones should be able to be determined by watching their growth from small disconnected bone buds in the embryo. Unfortunately, the references I’ve seen don’t make that growth clear in all cases. So, I’m stuck, for the present, with comparative anatomy within a phylogenetic framework that nests caecilians with Acherontiscus (Fig. 4) and kin, which have large and separate cheek bones.

FIgure 2. Eocaecilia has small limbs and a substantial tail.

FIgure 2. Eocaecilia has small limbs and a substantial tail. The tabular may be absent here unless it, too, is fused to the postorbital/squamosal. The tabular is tiny in Dermophis and probably useless.

Limbs and limb girdles
are absent in all extant caecilians and the majority of species also lack a tail. They have a terminal cloaca, like an earthworm. Limbs are vestigial in Eocaecilia (Fig. 2), and a substantial tail is present.

Figure 1. Eocaecilia skull with original and new bone identifications based on comparisons to sister taxa listed here. Like Brachydectes, the jaw joint has moved forward, beneath the jugal now fused to the quadratojugal creating a long retroarticular process, otherwise rare in amphibians. Also rare is the fusion of the squamosal with the postorbital.

Figure 3. Eocaecilia skull with original and new bone identifications based on comparisons to sister taxa listed here. Like Brachydectes, the jaw joint has moved forward, beneath the jugal now fused to the quadratojugal creating a long retroarticular process, otherwise rare in amphibians. Also rare is the fusion of the squamosal with the postorbital. Note the reduced supratomporal. here and in Dermophis.

The tentacle
Extant caecilians have a unique chemosensory organ located on the head called the tentacle. The tentacle exits the skull through the tentacular foramen (looks like an antorbital fenestra) located between the nares and orbit. Eocaecilia lacks this foramen (Fig. 3).

Figure 4. Acherotisicus has large cheek bones (squamosal, quadratojugal) that appear to fuse in Eocaecilia and Dermophis.

Figure 4. Acherotisicus has large cheek bones (squamosal, quadratojugal) that appear to fuse in Eocaecilia and Dermophis.

References
Peters WCH 1880 “1879”. Über die Eintheilung der Caecilien und insbesondere über die Gattungen Rhinatrema und Gymnopis. Monatsberichte der Königlichen Preussische Akademie des Wissenschaften zu Berlin 1879: 924–945.

Image above from Digimorph. org and used with permission.

wiki/Dermophis