Only the deep toothy jaw tips,
of the pterosaur Lonchodraco giganteus (Hooley 1914; Rodrigues & Kellner 2013; NHMUK PV 39412; originally Pterodactylus giganteus Bowerbank 1846; Fig. 1) are known. Ever wonder what the rest of this pterosaur looked like?
Well,
the 174-year wait is over.

Figure 1. Lonchodraco jaw tips. Colors added here. For the rest of this genus, see figure 2. The nasal (pink) is laminated between the premaxilla (yellow) and maxilla (green). The jugal (blue) also makes an appearance.
What little is known of Lonchodectes turns out to look like
the (so far) unnamed large ornithocheirid, SMNK PAL 1136 (Fig. 2) one of the largest of all flying pterosaurs. The very few parts they have in common are virtually identical, except for size (note the scale bars provided).

Figure 2. The unnamed giant ornithocheirid, SMNK PAL 1136 has a rostrum quite similar to that of Lonchodectes. With such giant wings, soaring over wave tops would have been ideal, dipping occasionally to feed without getting wet.
As one of the largest flying pterosaurs,
SMNK PAL 1136 (Figs. 2, 3) presents no vestigial terminal wing phalanges. No hyper-elongated neck cervicals are present. This pterosaur was built to soar like a big pelican.
Sorry, giant azhdarchids lovers
(Fig. 3). Those were not volant, as we learned earlier here. They grew to be so big AFTER they became flightless, like flightless birds do. Giant azhdarchids DO have vestigial wing phalanges and a hyper-elongated neck.
Earlier workers
did not match Lonchodraco to the SMNK PAL 1136 specimen. Earlier workers did not name the SMNK specimen. Perhaps someone is working on that specimen at present and other workers are giving him/her the honor/duty of naming it.
Wonder if
the Lonchodraco name will stick to the SMNK specimen?
Recently, Martill et al. 2020 took a close look
at the foramina in the jaw tips of Lonchodraco and thought they indicated enhanced sensitivity of the rostrum tip, which implied tactile feeding. With such giant wings, soaring over wave tops would have been likely, dipping occasionally to feed without getting the wings wet.
Odd that the top workers at the top universities
have decided to spend their time examining tiny pits on a broken 174-year-old pterosaur snout while ignoring the origin of pterosaurs… while ignoring many dozen complete pterosaurs that should be in phylogenetic analysis… while ignoring the lepidosaurs that gave rise to the ancestors of pterosaurs. Unfortunately, that’s the world academics live in today. They keep trying to not upset the lectures and textbooks from which they make their living. Apparently if academics focus on the details they won’t have to worry about the big picture. No one will ever know the difference if no one points out the elephant in the room.
References
Averianov AO 2020. Taxonomy of the Lonchodectidae (Pterosauria, Pterodactyloidea). Proceedings of the Zoological Institute RAS. 324 (1): 41–55. doi:10.31610/trudyzin/2020.324.1.41
Bowerbank JS 1846. On a new species of pterodactyl found in the Upper Chalk of Kent (Pterodactylus giganteus). Quarterly Journal of the Geological Society of London. 2: 7–9.
Bowerbank JS 1848. Microscopical observations on the structure of the bones of Pterodactylus giganteus and other fossil animals”. Quarterly Journal of the Geological Society. 4: 2–10.
Martill DM, Smith RE, Longrich N and Brown J 2020. Evidence for tactile feeding in pterosaurs: a sensitive tip to the beak of Lonchodraco giganteus (Pterosauria, Lonchodectidae) from the Upper Cretaceous of southern England. Cretaceous Research
Available online 3 September 2020, 104637 Cretaceous Research https://doi.org/10.1016/j.cretres.2020.104637
Rodrigues T and Kellner A 2013. Taxonomic review of the Ornithocheirus complex (Pterosauria) from the Cretaceous of England. ZooKeys. 308: 1–112. doi:10.3897/zookeys.308.5559