Reversals produce whale teeth, part 2

Short one today.
You might remember over a year ago a presentation on the evolution of mammal molars from simple to complex and back to simple again in toothed whales (Odontoceti, Fig. 1).

Figure 3. Mammal tooth evolution alongside odontocete tooth evolution, reversing the earlier addition of cusps.

Figure 1. Mammal tooth evolution alongside odontocete tooth evolution, reversing the earlier addition of cusps.

On the same note,
here’s a presentation of three skulls, Pachygenelus (pre-mammal cynodont), Megazostrodon (last common ancestor of all mammals in the large reptile tree (LRT, 1698+ taxa), and Maiacetus, a toothed pre-whale with limbs (Fig. 2).

Figure 1. The pre-mammal, Pachygenelus, the first mammal, Megazostrodon, and a transitional toothed whale, Maiacetus, with teeth highlighted to show the reversal in odontocete molars.

Figure 2. The pre-mammal, Pachygenelus, the first mammal, Megazostrodon, and a transitional toothed whale, Maiacetus, with teeth highlighted to show the reversal in odontocete molars. This may be the first time Megazostrodon was compared to a pre-whale.

Just concentrate on the teeth today,
and note how the simple cones (Fig. 3) of basal therapsids, then the canine led simple triangles of basal cynodonts (Fig. 2) then multicusped teeth of basal mammals (Fig. 2), slowly reversed over time to become, once again, triangles, then simple cones in odontocete whales (Fig. 4).

Figure 3. Basal therapsids, including Cutleria, with simple cones for teeth, as in odontocete whales.

Figure 3. Basal therapsids, including Cutleria, with simple cones for teeth, as in odontocete whales.

Figure 4. The killer whale (Orcinus orca) skeleton and skull with parts colorized.

Figure 4. The killer whale (Orcinus orca) skeleton and skull with parts colorized. Simple conical teeth line the jaws as in pre-cynodont synapsids.

As long-time readers know, baleen whales had their own evolution
as mysticetes arose from mesonychids, hippos, anthracobunids and desmostylians in turn, according to results recovered from the large reptile tree, which minimizes taxon exclusion by testing a wide gamut of nearly 1700 taxa.

Still waiting for a competing analysis
that tests a similar gamut of taxa. Emails to whale experts have not earned replies.


References

https://pterosaurheresies.wordpress.com/2019/01/02/mammal-tooth-evolution-toward-complexity-and-then-simplicity/

Restoring the skull of the basal bat, Onychonycteris

Short one today,
more ‘show’ than ‘tell’ as one picture and a caption pretty much tell the tale.

Figure 1. Onychonycteris is known from an articulated but crushed bottom half of the skull. Uncrushing it and giving it a suitable top half (Myzopoda) provides a restoration with some possibility of resemblance to theo original.

Figure 1. Onychonycteris is known from an articulated but crushed bottom half of the skull. Uncrushing it and giving it a suitable top half (Myzopoda) provides a restoration with some possibility of resemblance to theo original. Images from Simmons et al. 2010. The skull could have been less crushed than imagined here, so may have been proportionately shorter. The hole in the braincase of Myzopoda (above) may be a surgical opening to remove brain tissue. If natural, I do not know what it is.

And a cladogram
for phylogenetic context (Fig. 2).

Figure 1. Subset of the LRT focusing on the resurrected clade Volitantia, including dermopterans, pangolins, bats and their extinct kin.

Figure 2. Subset of the LRT focusing on the resurrected clade Volitantia, including dermopterans, pangolins, bats and their extinct kin.

Onychonycteris finneyi (Simmons, Seymour, Habersetze and Gunnell 2008) Eocene (~52mya), ~27 cm in length, is the most primitive known bat. It retained unguals (claws) on all five digits, a primitive trait not shared with other bats. Derived from a sister to ChriacusOnychonycteris phylogenetically preceded IcaronycterisMyotis and Pteropus in the LRT (subset Fig. 2).

Figure 2. Chriacus and Onychonycteris nest as a sister to the undiscovered bat ancestor and a basal bat. Miniaturization was part of the transition. So was enlargement of the manus. It is still a mystery why the transitional form decided to start flapping.

Figure 3. Chriacus and Onychonycteris nest as a sister to the undiscovered bat ancestor and a basal bat. Miniaturization was part of the transition. So was enlargement of the manus. It is still a mystery why the transitional form decided to start flapping.

Onychonycteris is smaller than Chriacus,
but the preserved portions of the skull and teeth are similar in proportion and morphology (Fig. 3). So… perhaps the proportions of the missing portion of the Chriacus skull are similar (fig. 1). More fossils will tell.

Veselka et al. 2010
concluded that O. finneyi may have been capable of echolocation.

By contrast, Simmons et al. 2010
argued that O. finneyi was probably not an echolocating bat.


References
Simmon NB, Seymour KL, Habersetzer J, Gunnell GF 2008. Primitive Early Eocene bat from Wyoming and the evolution of flight and echolocation. Nature 451 (7180): 818–21. doi:10.1038/nature06549. PMID 18270539.
Simmons NB, Seymour KL, Habersetzer J and Gunnell GF 2010. Inferring echolation in ancient bats. Nature 466: E8.
Veselka et al. (8 co-authors) 2010. A bony connection signals larygenal echolocation in bats.Nature 463: 939–942.

wiki/Onychonycteris

Kopidodon enters the LRT basal to pangolins

Today
another enigma taxon nests in the LRT.

The Messel pit (Eocene) assemblage
has produced some of the most incredible fossils of completely articulated skeletons of birds and mammals, often with feathers and fur. and, in this case (Fig. 1), small round ears.

Figure 1. One of five complete skeletons of Kopiodon known from the middle Eocene Messel pits. A hand, foot and pelvis are layered to extend the fingers and toes for scoring.

Figure 1. One of five complete skeletons of Kopiodon known from the middle Eocene Messel pits. A hand, foot and pelvis are layered to extend the fingers and toes for scoring.

Kopidodon macrognathus (originally Cryptopithecus macrognathus Wittich 1902; Weitzel 1933/4; Tobien 1969; Naturmuseum Senckenberg; 115cm total length; middle Eocene, 47 mya; Figs. 1, 5) is traditionally considered, “a squirrel-like mammal with large canines” and therefore, somewhat of an enigma taxon.

Here
in the large reptile tree (LRT, 1669+ taxa) Kopidodon nests at the at the base of the pangolins, a sister to Chriacus (Fig. 2) + bats. Kopidodon likely had a Late Jurassic genesis based on the presence of scaled Zhangheotherium in the Early Cretacous. The skull of Kopidodon has a convex profile, like that of another pangolin ancestor, Metachromys (Fig. 3). This helps inform the likely profile of Zhangheotherium, preserved ventrally exposed.

Figure 2. Chriacus and Onychonycteris nest as a sister to the undiscovered bat ancestor and a basal bat. Miniaturization was part of the transition. So was enlargement of the manus. It is still a mystery why the transitional form decided to start flapping.

Figure 2. Chriacus and Onychonycteris nest as sisters to the pangolin clade with Kopoidodon at its base.

Pangolins
llike Manis (Fig. 4) are slow-moving, muscular, tree climbing insectivores. Their hair coalesces to form overlapping scales. For protection pangolins are able to roll into a ball.

Figure 2. Pangolin ancestor Metacheiromys skeleton and skull.

Figure 3. Pangolin ancestor Metacheiromys skeleton and skull, less than half the size of Kopidodon.

Kopidon was a late survivor of a primitively fur covered radiation. 
Hair-scales first appear in Zhangheotherium.

Figure 2. Manis, the Chinese Tree Pangolin along with other views of other pangolins

Figure 4. Manis, the Chinese Tree Pangolin along with other views of other pangolins

Kopidodon
had 26-29 (it varies) presacral vertebrae + 3 sacrals. The foreclaws were taller than wide (similar to arboreal mammals) and larger than the hind claws. The feet were plantigrade. The limbs were heavily muscled and designed for slow movement. The tail vertebrae diminished posteriorly to tiny elongate bones. Stomach contents include fruit and seeds.

Figure 3. Kopiodon skull in situ 2x and reconstructed.

Figure 5. Kopiodon skull in situ 2x and reconstructed. Compare to figure 3.

Kopidodon is traditionally considered a member
of the Cimolesta, the Pantolestidae, and the Paroxyclaenidae, but traditional members do not form monophyletic clades in the LRT.

Wikipedia (German version) reports,
The first description of Kopidodon took place in 1933, the taxonomic position was controversial for a long time.” The original name, Cryptopithecus, reflects that uncertainty as it tentatively allied this taxon with primates. The LRT minimizes taxon exclusion problems by including a wide gamut of taxa.

If this is not a novel hypothesis of interrelationships,
let me know of the original citation so I can promote it.


References
Clemens WA and von Koenigswald W 1993. A new skeleton of Kopidodon macrognathus from the Middle Eocene of Messel and the relationship of paroxyclaenids and pantolestids based on postcranial evidence. Kaupia 3, 1993, S. 57–73.
Koenigswald W von 1983. Skelettfunde von Kopidodon (Condylarthra, Mammalia) aus dem mitteleozänen Ölschiefer der Grube Messel bei Darmstadt. N Jb Geol Paläont Abh 167:1–39.
Koenigswald W von 1992. The arboreal Kopidodon, a relative of primitive hoofed mammals. In: Schaal S, Ziegler W (eds) Messel. An insight into the history of life and of the Earth. Clarendon Press, Oxford, pp 233–237.
Tobien H 1969. Kopidodon (Condylarthra, Mammalia) aus dem Mitteleozän (Lutetium) von Messel bei Darmstadt (Hessen). Notizblätter der hessischen Landesanstalt für Bodenforschung 97, 1969, S. 7–37.
Tobien H 1988. Kopidodon (Condylarthra, Mammalia) aus dem Mitteleozän (Lutetium) von Messel bei Darmstadt (Hessen). = Kopidodon (Condylarthra, Mammalia) from the middle Eocene (Lutetian) of Messel near Darmstadt, Hesse. Notizblatt des Hessischen Landesamtes fuer Bodenforschung zu Wiesbaden 97: 7-37.
Weitzel K 1933. Kopidodon macrognathus Wittich, ein Raubtier aus dem Mitteleozän von Messel. Notizblätter des Vereins für Erdkunde der hessischen geologischen Landesanstalt Darmstadt 14, 1933, S. 81–88
Wittich E 1898, 1902. ein Raubtier aus dem Mitteleozän von Messel. Notizblatt des Vereins für. Erdkunde zu Darmstadt (5)14: 81-88.

Greman/wiki/Kopidodon

Middle Jurassic moonrat: Asfaltomylos patagonicus

Ever since the LRT nested multiberculates within Glires,
we’ve been looking for non-multituberculate members of Glires (rats, rabbits, tree shrews, etc.) from the Jurassic to support that novel hypothesis. Here’s one.

Martin and Rauhut 2005
redescribed the mandible and teeth belonging to Asfaltomylos (Rauhut et al. 2002; Fig. 1) famous for being the first Jurassic mammal from South America and for apparently lacking a canine and incisors.

The question:
Is this an egg-laying monotreme (clade: Prototheria)? That’s what both Rauhut et al. 2002 and Martin and Rauhut 2005 thought based on tooth shape and a post-dentary groove in the medial dentary. They also excluded taxa listed below (and shown in figure 1). Such bias is a too common fault in traditional paleontology, as long time readers are well aware.

Figure 1. Asfaltomylos (MPEF-PV 1671) is a tiny mandible with teeth from in Jurassic strata in South America. Note the shape of the posterior premolar and how it relates to the giant posterior premolar in Carpolestes. The canine is tall. Not sure if Asfaltomylos had large incisors. Either way it does not matter, based on comparisons to Echinosorex and Erinaceus, the living moonrat and hedgehog.

Figure 1. Asfaltomylos (MPEF-PV 1671) is a tiny mandible with teeth from in Jurassic strata in South America. Note the shape of the posterior premolar and how it relates to the giant posterior premolar in Carpolestes. The canine is tall. Not sure if Asfaltomylos had large incisors. Either way it does not matter, based on comparisons to Echinosorex and Erinaceus, the living moonrat and hedgehog. Only the posterior molar in Erinaceus looks like the two molars in Asfaltomylos, separated in time by 166 million years.

Based primarily on tooth morphology,
Rauhut et al. 2002 considered Asfaltomylos a member of the Australosphenida, a clade of southern Jurassic mammals that is said to convergently evolve tribosphenic molars with northern mammals and probably gave rise to monotremes. Their taxon restricted cladogram nested Asfaltomylos between Shuotherium (Fig. 2) and several untested taxa leading to several platypus-like  taxa (including genus: Ornithorhynchus; Fig. 3.)

Question for you, dear readers:
Do the mandibles of Asfaltomylos (Fig. 1) and Shuotherium (Fig. 2) resemble one another? They should, given their proximity in the Rauhut et al. and Martin and Rauhut cladograms. If you think they don’t look similar, perhaps we need to expand the taxon list.

Figure 2. Medial view of Shuotherium. The last premolar is similar to the first molar, the coronoid process is tiny and the retroarticular process is absent, all distinct from Asfaltomylos (Fig. 1).

Figure 2. Medial view of Shuotherium. The last premolar is similar to the first molar, the coronoid process is tiny and the retroarticular process is absent, all distinct from Asfaltomylos (Fig. 1).

As a test, let’s add all the mammals in the LRT.
When we do, and based on very few mandible characters, Asfaltomylos foregoes the Prototheria and nests with derived members of Glires, derived from moonrats, the only members of Glires that sometimes do not have large gnawing incisors (yet another reversal).

Only the posterior molar
in the hedgehog, Erinaceus (Fig. 1), looks like the two molars in Asfaltomylos, separated in time by 166 million years. The premolar is nearly identical.

Moonrats
(Fig. 4) have an appropriately primitive appearance, and are different from other members of Glires in being chiefly carnivorous.

Rougier et al. 2007
considered Henosferus another member of the clade ‘Australosphenida’. With its  complete dental formula on a low profile mandible, Henosferous (Fig. x) nests with other basalmost therians, like Morganucodon (Fig. 3) in the LRT, not close to Asfaltomylos. So members of the invalidated clade ‘Australosphenida’ are polyphyletic in the LRT.

Figure 1. Henosferus mandible restored by Rougier et al. 2005 from several broken specimens.

Figure x. Henosferus mandible restored by Rougier et al. 2005 from several broken specimens.

Phylogenetic miniaturization and neotony
answer the problems posed by the low number of molars and the retention of the postdentary trough in Asfaltomylos. As you may recall, mammals recapitulate their phylogeny during ontogeny and Asfaltomylos matured at an earlier stage of development due to its small size.

Tooth morphology is something else to be ware of in phylogenetic analyses.
As an example, whale teeth devolved from multi-cusped in a square in their four-limbed terrestrial ancestors, to multi-cusped in a row in archaeocetes with flukes, to simple cones and toothlessness in derived odontocetes.

Figure 1. Brasilodon compared to Kuehneotherium, Akidolestes and Ornithorhynchus, the living platypus.

Figure 3. Brasilodon compared to Kuehneotherium, Akidolestes and Ornithorhynchus, the living platypus, and Monodelphis, a living tree opossum.

The problem is,
the high coronoid process and retroarticular (angular) process of Asfaltomylos are not found in Ornithorhynchus (Fig. 3) nor in other Prototheres in the large reptile tree (LRT, 1631+ taxa, Fig. 2). Prototheria are notable for their long rostra, lots of teeth and low coronoid process, traits that don’t match the  Asfaltomylos mandible. The medial surface of Asfaltomylos does include a dentary trough in which tiny posterior jaws bones would soon evolve to become ear bones… except that happens by convergence in highly derived arboreal mammals, like multituberculates, that experience that reversal in the auditory region, to the chagrin of Jurassic mammal workers worldwide.

Figure 3. Echinosorex, the extant moonrat, looks like an opossum, but nests with Deinogalerix in the large reptile tree.

Figure 4. Echinosorex, the extant moonrat, looks like an opossum, but nests with Deinogalerix in the large reptile tree.

In the LRT
Asfaltomylos nests with the moonrat Echinosorex, not far from Carpolestes (Fig. 1), a plesiadapiform in the LRT. 

Here’s a thought:
Take a look at that tall, narrow, posterior premolar in Asfaltomylos. That’s what turns into a similar posterior premolar in moonrats and hedgehogs. That’s what turns into a large cutting premolar in Carpolestes and multituberculates. 

Figure 1. Subset of the LRT focusing on Glires and subclades within.

Figure 5. Subset of the LRT focusing on Glires and subclades within. Moonrats and hedgehogs are not too far from Carpolestes and arboreal taxa like aye-aye.

Once again, the LRT shows why it is so important
to test all enigma taxa against a wide gamut of taxa, like the LRT. The LRT minimizes bias in the choice of the inclusion set of taxa. The number of characters for the mandible in the LRT comes down to less than dozen. Tooth cusp characters are largely omitted. So character count is, once again, shown to be not nearly as important, contra the opinions of workers who ask for more characters to no advantage.


References
Martin T and Rauhut OWM 2005. Mandible and dentition of Asfaltomylos patagonicus (Australosphenida, Mammalia) and the evolution of tribosphenic teeth. Journal of Vertebrate Paleontology 25(2):414–425.
Rauhut OWM, Martin T Ortiz-Jaureguizar E and Puerta P 2002. A Jurassic mammal from South America. Nature 416:165–168.
Rougier, GW, Martinelli AG, Forasiepi AM and Novacek M J 2007. New Jurassic mammals from Patagonia, Argentina : a reappraisal of australosphenidan morphology and interrelationships. American Museum novitates, no. 3566. online here.

wiki/Asfaltomylos

https://pterosaurheresies.wordpress.com-henosferus/

Daphoenus: basal to only one kind of bear-dog in the LRT

Today’s post
was inspired by a recent PBS Eons YouTube video (link below) on bear-dogs. Earlier we learned that not all bear-dogs are related to one another.

FIgure 1. Skeleton of Daphoneus.

FIgure 1. Skeleton of Daphoenus, basal to Amphicyon major, about the size of a coyote. This mount is digitigrade, but some sources report it was plantigrade, based on fossil footprints.

Daphoenus is correctly mentioned as a basal bear-dog.
It’s important to note, though, that bears are not related to dogs in the large reptile tree (LRT, 1619+ taxa). Cats and hyaenas are closer to dogs and some bear-dogs are more closely related to hyaenas and hyaenodonts (marsupials) in the LRT.

Figure 1. Two skulls attributed to Daphoneus, one with colors added.

Figure 2. Two skulls attributed to Daphoenus, one with colors added. Skull length 20cm.

Daphoenus vetus (Leidy 1853; Middle Eocene to Middle Miocene, 37-16mya). Like related dogs (genus: Canis) this mid-sized predator dug burrows for offspring nesting and hiding sites. Here it nests basal to Amphicyon major, a bear-dog related to dogs.

You can learn more
about bear-dogs here, here and here.


References
Leidy J 1853. Observations on a collection of fossil Mammalia and Chelonia from the Mauvaises Terres of Nebraska. Proc. Acad. Nat. Sci. Philad., 6: 392–394.

wiki/Daphoenus

SVP abstracts – Ambolestes and the origin of placentals

Bi S-D et al. 2019 discuss Early Cretaceous Ambolestes
(Figs. 1, 2) and the Early Mesozoic marsupial/placental split.

Figure 1. Ambolestes tracing from Bi et al. 2018.

Figure 1. Ambolestes tracing from Bi et al. 2018.

From the abstract:
“Extant placental and marsupial mammals are the dominant vertebrates in many ecosystems, which makes the placental-marsupial dichotomy a significant event in Earth’s history.”

The large reptile tree (LRT, 1592 taxa) splits placentals from marsupials as shown below (Figs. 3, 4). The Early Cretaceous marsupial Bishops splits from the placental outgroup taxon, the extant marsupial Caluromys (Fig. 6). More timely, derived placental multituberculates, like Megaconus (Fig. 5), have been found in Middle Jurassic strata. That means a long line of undiscovered small, arboreal, placentals extends back to the Late Triassic/Earliest Jurassic.

Figure 3. Ambolestes skull reconstructed. Jaw tips restored.

Figure 2. Ambolestes skull reconstructed. Jaw tips restored.

Bi et al. continue:
“Molecular estimates of the divergence of placentals and marsupials (and their broader clades Eutheria and Metatheria) fall primarily in the Jurassic.”

Since Early Jurassic Megazostrodon is the proximal outgroup for all mammals, and Early Triassic Morganucodon is a marsupial, and Middle Jurassic Megaconus the LRT supports a Late Triassic split for placentals and marsupials.

Figure 1. Select basal cynodonts and mammals set chronologically. The divergence times for placentals (Eutheria), marsupials (Metatheria) and monotremes (Mammalia) are estimated here.

Figure 3. Select basal cynodonts and mammals set chronologically. The divergence times for placentals (Eutheria), marsupials (Metatheria) and monotremes (Mammalia) are estimated here. Note the large gaps of time in which fossils are not known.

Bi et al. continue:
“In support, the oldest purported eutherian, Juramaia, is reported to be from the early Late Jurassic (160 million-years ago) of Liaoning Province, northeastern China.”

In the LRT (subset Fig. 1) Juramaia nests as a basal prototherian, an egg laying basal mammal.

“The oldest purported metatherian, Sinodelphys, is 35 million-years younger from the
Early Cretaceous Jehol Biota also in Liaoning Province, northeastern China.”

In the LRT Sinodelphys is another monotreme.

“In 2018, we reported a new eutherian, Ambolestes zhoui, also from the Jehol Biota. The fossil, a nearly complete skeleton, preserves anatomical detail unknown from contemporaneous eutherians including the hyoid apparatus and ectotympanic. The complete hyoid is the first known for any Mesozoic mammaliaform, and the ectotympanic resembles that in some extant didelphid marsupials.”

In the LRT (Fig. 1) Ambolestes (Figs. 3, 4) is a metathere/marsupial close to the extant Virginia opossum, Didelphis.

Figure 1. Subset of the LRT focusing on the Kynodontia and Mammalia. Non-eutherian taxa in red were tested in the LRT but not included because they reduce resolution. Eutherian taxa in red include a basal pangolin and derived xenarthran, clades that extend beyond the bottom of this graphic. The pink clade proximal to mammals was considered mammalian by Lautenschlager et al. due to a convergent mammalian-type jaw joint.

Figure 4. Subset of the LRT focusing on the Kynodontia and Mammalia. Non-eutherian taxa in red were tested in the LRT but not included because they reduce resolution. Eutherian taxa in red include a basal pangolin and derived xenarthran, clades that extend beyond the bottom of this graphic. The pink clade proximal to mammals was considered mammalian by Lautenschlager et al. due to a convergent mammalian-type jaw joint.

Bi et al. continue:
“In our phylogenetic analysis concentrating on the eutherian-metatherian 
dichotomy, the closest relative of Ambolestes was Sinodelphys, and both fell within Eutheria.”

As shown above, the LRT does not confirm that hypothesis of interrelationships.

Figure 1. Subset of the LRT focusing on Glires and subclades within.

Figure 5. Subset of the LRT focusing on Glires and subclades within.

Bi et al. continue:
“With Sinodelphys as a eutherian, postcranial differences formerly thought to indicate different invasions of a scansorial niche by meta and eutherians in Jehol are only variations among the early members of the placental lineage. Additionally, the earliest known metatherians are approximately 15 million years younger than previously thought and their

fossils, isolated teeth and fragmentary jaws, are from North America. Our tree results in a 50 million-year ghost lineage for Metatheria, accepting the 160 million-years age for Juramaia. 

The LRT confirms a 210 mya origin for Metatheria, starting with Morganucodon, so no ghost is necessary.

Figure 8. Caluromys, the largest of the mouse opossums, to scale with its LRT sister, Vulpavus, a basal member of Carnivora.

Figure 6. Caluromys, the largest of the mouse opossums, to scale with its LRT sister, Vulpavus, a basal member of Carnivora and Placentalia.

Bi et al. continue:
“A possibility raised elsewhere is that the age of Juramaia is incorrect; rather than Late Jurassic, perhaps it is from the Early Cretaceous Jehol Biota. In our study, Juramaia is in a clade with Albian/Aptian Prokennalestes and Late Cretaceous eutherians by having a more molariform ultimate upper premolar. In contrast, Ambolestes, as in the outgroups, has a non-molariform ultimate upper premolar. Although resolution of this intriguing debate is not currently possible, our understanding of the issues has been furthered by the discovery of Ambolestes.”

As shown above, the LRT does not confirm the Bi et al. hypothesis of interrelationships.


References
Bi S-D et al. 2019. The Early Cretaceous eutherian Ambolestes and its implications for the Eutherian/Metatherian dichotomy. Journal of Vertebrate Paleontology abstracts.

Earliest Paleocene mammals recovered from concretions

Lyson et al. 2019 bring us a peek
into a selection of mammal skulls (Fig. 1) preserved in concretions buried in the first few hundreds of thousands of years (up to 1million years) of sediment following the K-T extinction event (= KPgE) 66mya.

Figure 1. From Lyson et al. 2019 showing skulls of increasing size following the KPgE.

Figure 1. From Lyson et al. 2019 showing skulls of increasing size following the KPgE. These come from a variety of clades, not a single one. Tiny taxa were omitted from every stratum.

 

The illustration of skull through time from Lyson et al. 2019
from one locality (Fig.1 ) suggests that mammals were small immediately following the KPgE and thereafter increased and diversified over time. No doubt that happened in a general sense. However…

Placed into a phylogenetic context
(using the large reptile tree (LRT, 1590 taxa) indicates the skulls are from a wide variety of mammals, not a single clade. Lyson et al. omitted tiny taxa from every stratum, evidently to make them tell this tale.

  1. Didelphodon is a highly derived creodont marsupial in the LRT (Fig. 2).
  2. Baioconodon is a related marsupial not yet in the LRT
  3. Loxolophus A is a third creodont in the LRT
  4. Loxolophus B is a fourth creodont in the LRT
  5. Ectoconus is a basal terrestrial herbivorous placental (= basal condylarth) in the LRT
  6. Carsioptychus (originally Plagioptychus) nests with Sinonyx in the Anagale / tenrec / odontocete clade in the LRT. It was a mesonychid mimic.
  7. Taeniolabis is a highly derived multituberculate member of Glires
  8. Eoconodon nests with Mesonyx or Sinonyx, a mesonychid mimic (Fig. 3). I need more data than just a mandible.

In other words,
these taxa come from a variety of marsupial and placental clades, all with origins deep in the Mesozoic. The increases in skull size in the graphic (Fig. 1) following the extinction event was done by cherry-picking these skulls and omitting small taxa. We know that tiny rodents, primates and tree shrews were present in the earliest Paleocene because we have them today and we have them in the Jurassic. The authors told the story they wanted to tell and my hat is off to them. The publicity rush (see links below) and PBS NOVA special (see YouTube video below) that attend the publication of their paper attests to the industry they tapped into that exists to promote stories that otherwise would not have risen to this level of interest. After all, other fossils found in concretions don’t get this sort of press. 

Even so,
it’s always good to see paleontology told so well on the screen. And discoveries are always worthwhile. Some of these taxa (see list above) had to be added to the LRT to figure out just what they were in a phylogenetic sense, and that’s always interesting as well. 

Figure 6. Didelphodon from Wilson et al. 2016 had a 12 cm long skull.

Figure 2. Didelphodon from Wilson et al. 2016 had a 9 cm long skull.

Figure 7. Eoconodon was either a mesonychid like Mesonyx, or a pre-tenrec mesonychid-mimic like Sinonyx.

Figure 3. Eoconodon was either a mesonychid like Mesonyx, or a pre-tenrec mesonychid-mimic like Sinonyx. You can see how similar the mandibles are to each other. Even the teeth are similar.

References
Lyson TR et al. (15 co-authors) 2019. Exceptional continental record of biotic recovery after the CretaceousâPaleogene mass extinction. Science: eaay2268 (advance online publication) DOI: 10.1126/science.aay2268
Wilson GP, Eddale EG, Hoganson JW, Calede JJ and Vander Linden A 2016. A large carnivorous mammal from the Late Cretaceous and the North American origin of marsupials. Nature Communications 7:13734  PDF

https://science.sciencemag.org/content/early/2019/10/23/science.aay2268

https://www.sciencemag.org/news/2019/10/how-life-blossomed-after-dinosaurs-died

https://www.pbs.org/wgbh/nova/article/fossils-million-years-after-dinosaurs-died/

https://phys.org/news/2019-10-fossil-trove-life-fast-recovery.html

https://www.nationalgeographic.com/science/2019/10/new-fossils-show-mammals-growth-spurt-after-dinosaurs-died-corral-bluffs/

https://www.sciencealert.com/stunning-fossil-trove-shows-how-mammals-flourished-after-the-dinosaurs-died

Heterohyus enters the LRT

Figure 1. Two of several Heterohyus specimens from the Messel Pit of Germany.

Figure 1. Two of several Heterohyus specimens from the Messel Pit of Germany.

Heterohyus nanus (Gervais 1848, late Eocene) from the Messel Pit in Germany nests with Apatemys in the large reptile tree (LRT, 1563 taxa). Relatively few traits differentiate the two. The lumbar region is shorter. The skull is larger. The naris is smaller and higher on the rostrum.

According to Wikipedia members of the Apatemyidae were
“small and presumably insectivorous. Size ranged from that of a dormouse to a large rat. The toes were slender and well clawed, and the family were probably mainly arboreal.[2] The skull was fairly massive compared to the otherwise slender skeleton, and the front teeth were long and hooked, resembling those of the modern aye-aye and marsupial Dactylopsila, both whom make their living by gnawing off bark with their front teeth to get at grubs and maggots beneath.”

The LRT nests apatemyids
as basal members of Glires, not related to other so-called cimolestids, a polyphyletic assembly of placental taxa. according to the LRT. Rather apatemyids are a clade of gnawing tree shrews, now extinct.


References
Gervais P 1848–52. Primates, Microchoeridae? Zoologie et Paléontologie Françaises. Paris, Arthrus Bertrand, text, 2 vols; atlas, 80 pls.

wiki/Heterohyus
wiki/Apatemyidae

 

The bush dog, first known as a fossil, enters the LRT

Figure 1. Speothos is the living bush dog from South America.

Figure 1. Speothos is the living bush dog from South America. This taxon is basal to cats + dogs + hyaenas.

The South American bush dog
Speothos veanticus (Lund 1842; up to 75cm in length; Figs. 1, 2) is traditionally considered a basal dog (family: Canidae). Here Speothos nests at the base of cats + hyaenas + aardwolves + dogs. Miacis is a similar sister basal to sea lions and both are derived from another short-legged carnivore, the European mink, Mustela. Speothos was first identified as a fossil, then as a living taxon. Webbed toes allow this genus to swim more effectively.

Figure 2. Speothos, the South American bush dog, skeleton and in vivo.

Figure 2. Speothos, the South American bush dog, skeleton and in vivo.


References
Lund PW 1842. Fortsatte bernaerkninger over Brasiliens uddöde dirskabning.Lagoa Santa d. 27 de Marts 1840. Kongelige Danske Videnskabernes Selskab Afhandlinger 9:1-16.

wiki/Bush_dog

 

Microdocodon: If those are hyoids, then where are the fingers?

A new mammaliaform, Microdocodon,
(Zhou et al. 2019; Figs. 1–4; Middle Jurassic, 165 mya) is exceptionally well preserved and complete, down to the smallest details. According to the authors, those details include “complex and saddle-shaped hyoid bones (Fig. 1), like those seen in modern mammals.”

Figure 1. From Zhou et al., colors added. Microdocodon is in yellow. The two taxa in dark gray are derived members of Glires and do not nest in the LRT where shown here.

Figure 1. From Zhou et al. 2019, colors added. Microdocodon is in yellow. The two taxa in gray are derived members of Glires and do not nest in the LRT where shown here. It is obvious from looking at this evolutionary progression that the two highly derived gnawing taxa do not document a gradual accumulation of derived traits, like the remaining plesiomorphic taxa do.

Timing?
Microdocodon was found in strata 40 million years into the Jurassic, some 40 million years after the appearance of the first mammal, Megazostrodon in the large reptile tree (LRT, 1545 taxa). Pre-mammal cynodonts lived alongside mammals throughout the Mesozoic.

H-shaped, articulated hyoids were unexpected in such a primitive cynodont
and a dozen news organizations picked up on the unexpectedness of this story. If valid this would suggest that a muscularized throat was present phylogenetically before the genesis of the milk-suckling clade, Mammalia.

Figure 1. Microdocodon throat region. Are those bones hyoids or fingers? If hyoids, then where are the fingers? Note the displaced radius (olive green)  reaching toward the throat. Only impressions of once present fingers are present on the right limb.

Figure 2. Microdocodon throat region. Are those bones hyoids or fingers? If hyoids, then where are the fingers? Note the displaced radius (olive green)  reaching toward the throat. Only impressions of once present (or still buried) fingers are present on the right limb.

Unfortunately,
there may be reason to doubt the identity of these bones. Are they hyoids? Or fingers? If the mystery bones are indeed hyoids, then the fingers are missing. If fingers, then the hyoids are missing, which takes all the surprise and wonder out of the Zhou et al. paper.

FIgure 2. Microdocodon in situ. Plate and counter plate plus colors added.

FIgure 3. Microdocodon in situ. Plate and counter plate plus colors added. Manus, pelvis and pes reconstructed. The recombining of plate and counter plate is something that does not work as well in print.

From the abstract
“We report a new Jurassic docodontan mammaliaform found in China that is preserved with the hyoid bones. Its basihyal, ceratohyal, epihyal, and thyrohyal bones have mobile joints and are arranged in a saddle-shaped configuration, as in the mobile linkage of the hyoid apparatus of extant mammals. These are fundamentally different from the simple hyoid rods of nonmammaliaform cynodonts, which were likely associated with a wide, nonmuscularized throat, as seen in extant reptiles. The hyoid apparatus provides a framework for the larynx and for the constricted, muscularized esophagus, crucial for transport and powered swallowing of the masticated food and liquid in extant mammals. These derived structural components of hyoids evolved among early diverging mammaliaforms, before the disconnection of the middle ear from the mandible in crown mammals.”

The big question is:
If those are indeed hyoids, then where are the fingers? EVERYTHING else is present and visible on this perfectly preserved fossil, except, apparently, the fingers of both hands.

Further complication:
I looked closely at the purported hyoids and found they

  1. included unguals
  2. began at the wrist
  3. were articulated like fingers
  4. had all the proportions and correct number expected in a typical manus from that node on the LRT (Fig. 5).

Often enough,
when bones you expect are missing AND similar bones you don’t expect are present, you should suspect that a misidentification is taking place.

Figure 3. Microdocodon skull, plate and counter plate, colors added.

Figure 4. Microdocodon skull, plate and counter plate, colors added.

After phylogenetic analysis
Microdocodon nests at the base of the Tritylodontidae (Oligokyphus and kin) + (Riograndia + Chaliminia) clade. These are therapsids retaining a primitive quadrate/articular jaw joint, not like a mammal with a squamosal/dentary jaw joint.

At this point it is probably good to remember
that the most primitive mammals do not suckle. Prototherians, like echidnas and platypuses lick their mothers milk from sweat puddles on her belly. Only metatherians and eutherians have infants that suckle on their mothers’ teats, which is several nodes up the ladder from Microdocodon.

A docodont?
The authors considered Microdocodon a small member of the Docodonta, a clade traditionally defined by dental and mandible traits. Unfortunately, Microdocodon does not nest in the LRT with other clade members listed on the Wikipedia page. As we’ve seen many times, dental traits can converge.

The phylogenetic analysis of Zhou et al. employs “tritylodontids” as a suprageneric taxon nesting outside of Pachygenelus, (the opposite of the LRT) derived from Thrinaxodon and Massetognathus. To their peril, Zhou et al. include a long list of multituberculates, but no carpolestid and plesiadapid sister taxa recovered by the LRT. So taxon exclusion is a problem as highly derived multituberculates arise in Zhou et al. prior to primitive prototherians (Fig. 1). Also mis-nested in the Zhou et al analysis, the early and basal metatherian, Eomaia and the basal prototherian, Juramaia, nest as derived eutherians. These are all red flags, probably arrived at by an over-reliance on dental traits and the most typical problem in vertebrate paleontology: taxon exclusion. The LRT minimizes taxon exclusion because it tests such a wide gamut of taxa.

Figure 5. Microdocodon pectoral and forelimb reconstruction from DGS traced elements.

Figure 5. Microdocodon pectoral and forelimb reconstruction from DGS traced elements. Those fingers were originally considered hyoid elements. Yes, those are elongate coracoids, typically found in members of the Tritylodontidae.

But wait! All is not lost.
Microdocodon fills an important gap leading to the Tritylodontidae in the LRT. So it can still be exciting and newsworthy for this overlooked reason.

The pre-mammal/pre-tritylodontid split occurred
by the Middle Triassic, which gives Middle Jurassic Microdocodon plenty of time to evolve distinct traits. And it did. The snout is longer than typical. The medial metatarsals were atypically longer than the others. Tiny phalanges 3.2, 4.2, 4.3 and 5.2 reappear after disappearing several nodes earlier. That bit of atavism is interesting. The limbs are long and gracile with reduced interoseal space between the crural and ante brachial elements, mimicking/converging on more derived mammals.

Figure 6. Subset of the LRT focusing on basal Therapsida and Microdocodon's nesting in it.

Figure 6. Subset of the LRT focusing on basal Therapsida and Microdocodon’s nesting in it.

The authors report,
“Phylogenetically, Microdocodon and [coeval] Vilevolodon are the earliest-known mammaliaform fossils with mammal-like hyoids.” Vilevolodon is a highly derived, squirrel-like member of the clade Multituberculata within the rodent/rabbit clade of Glires within the Eutheria in the LRT.

Articulated hyoids
are exceptionally rare in the early fossil record of mammals. So are basal mammals.

Everyone is looking for a headline with every new fossil specimen.
Unfortunately, as we’ve seen time and again, you can’t believe everything you read, even after PhD peer review and publication in Nature and Science. Make sure you test all novel hypotheses with careful observation and a wide gamut phylogenetic analysis.


References
Zhou C-F, Bullar B-A S, Neander AI, Martin T and Luo Z-X 2019. New Jurassic mammaliaform sheds light on early evolution of mammal-like hyoid bones. Science 365(6450):276–279.

https://www.sciencenews.org/article/flexible-bone-helps-mammals-chew-dates-back-jurassic-period

https://www.sciencedaily.com/releases/2019/07/190718140440.htm

For a dozen more popular articles: Google keyword: Microdocon.