New Champsosaurus paper perpetuates old myths

Whenever taxon exclusion mistakes are made and reviewed here,
I try to write to the lead author of the paper. Below is a recent email directed to Professor Dudgeon et al. 2020 on their recent review of the well-preserved skull of Champsosaurus (Figs. 1, 3), which they re-examined using computed tomography analysis.

Figure 1. Champsosaurus from Dugeon et al. Here the nasal is the ascending process of the premaxilla. The prefrontal is the nasal fused to the prefrontal. The postorbital is the postfrontal and vice versa.

Figure 1. Champsosaurus from Dugeon et al. Here the nasal is the ascending process of the premaxilla. The prefrontal is the nasal fused to the prefrontal. The postorbital (pro) is the postfrontal (pof) and vice versa.

Dear Dr. Dudgeon:

It’s always good to see new studies on old skulls.

Based on phylogenetic bracketing the bone traditionally identified as the ‘nasal’ is the ascending process of the premaxilla. That makes the purported ‘prefrontal’ a fused nasal + prefrontal. The postorbital and postfrontal are mislabeled with the other bone identity based on Tchoria (Fig. 2), a taxon not mentioned in your text. See attached.

Choristoderes are not ‘neodiapsid reptiles.’ Phylogenetically they are archosauriformes arising from Proterosuchus, Elachistosuchus and Tchoria. Phylogenetic miniaturization in that lineage lost the antorbital fenestra. See links below.

https://pterosaurheresies.wordpress.com/2013/08/13/champsosaurus-and-its-snorkel-nose/
http://reptileevolution.com/reptile-tree.htm
http://reptileevolution.com/champsosaurus.htm
http://reptileevolution.com/youngina-bpi2871.htm
http://reptileevolution.com/hyphalosaurus.htm
http://reptileevolution.com/lazarussuchus.htm

Best regards,

Figure 1. Tchoria and phylogenetic bracketing help identify bones in the skull of Champsosaurus (Fig. 2).

Figure 2. Tchoria and phylogenetic bracketing help identify bones in the skull of Champsosaurus (Fig. 2).

So, the Dudgeon et al. paper
is yet another great example of a situation in which phylogenetic analysis and bracketing (= comparing related taxa) sheds more light on a specimen than high-resolution micro-computed tomography scanning and/or adding characters (= looking more deeply into one taxon to the exclusion of others).

Figure 2. Champsosaurus skull with premaxilla in yellow.

Figure 3. Champsosaurus skull with premaxilla in yellow, nasal + prefrontal in pink. Bone identities determined by phylogenetic bracketing with Tchoria. See figure 2.

The greatest benefit 
available from the large reptile tree (LRT, 1631 taxa) is this sort of phylogenetic bracketing based on the validated nesting of sisters that have never been tested together in prior studies. You can look more deeply into one skull, as Dudgeon et al. did. Or you can examine many skulls, as ReptileEvolution.com and the LRT enable workers to do (Figs. 2, 4). In this case, using computed tomography on one skull did not put an end to traditional myths regarding the identity of bones in Champsosaurus.

Note to readers who like to harp on these issues:
More characters were not needed to resolve these problems. More taxa were needed.

Firsthand access + computed tomography did not help Dudgeon et al. Rather, a century-old drawing (Brown 1905, Fig. 3), access to several sister taxa for comparison (Figs. 2, 4) and Adobe Photoshop were the tools needed to resolve this issue.

It helps to know what you are dealing with.
Only a wide-gamut phylogenetic analysis that minimizes taxon exclusion can tell you where a specimen nests in the cladogram. Too often workers like Dudgeon et al. rely on vague citations, rather than running tests themselves or citing ongoing and self-repairing studies like the LRT. Publishing a mistake is to be avoided no matter how trivial.

Figure 2. Dorsal, lateral and palatal views of BPI 2871 with bones colorized above. Below, reconstructed images of BPI 2871 tracings. It is more complete than illustrated by Gow 1975. Click to enlarge. Note the tiny remnant of the antorbital fenestra. The squamosal has been broken into several parts.

Figure 4. Dorsal, lateral and palatal views of Late Triassic BPI 2871 with bones colorized above. Below, reconstructed images of BPI 2871 tracings. It is more complete than illustrated by Gow 1975. Note the tiny remnant of the antorbital fenestra and the long ascending process of the premaxilla.  The squamosal has been broken into several parts. This is a tiny phylogenetically miniaturized sister to the ancestor of Champsosaurus.

Champsosaurus annectens (Cope 1876, Brown 1905) ~1.5 m in length, Late Cretaceous to Eocene. Champsosaurus was derived from a sister to Tchoiria, and was a sister to other choristoderes, such as Cteniogenys and Lazarussuchus. This clade must have originated in the Late Permian or Early Triassic, but fossils are chiefly from late survivors, hence the wide variety in their morphology.


References
Brown B 1905. The osteology of Champsosaurus Cope. Memoirs of the AMNH 9 (1):1-26. http://digitallibrary.amnh.org/dspace/handle/2246/63
Cope ED 1876.
On some extinct reptiles and Batrachia from the Judith River and Fox Hills beds of Montana: Proceedings of the Academy of Natural Sciences, Philadelphia. 28, p. 340-359.
Dudgeon TW, Maddin HC, Evans DC & Mallon JC 2020. 
Computed tomography analysis of the cranium of Champsosaurus lindoei and implications for choristoderan neomorphic ossification. Journal of Anatomy (advance online publication)
doi: https://doi.org/10.1111/joa.13134
https://onlinelibrary.wiley.com/doi/10.1111/joa.13134

http://reptileevolution.com/champsosaurus.htm

Champsosaurus and its snorkel nose

Choristoderes are a varied clade of mostly aquatic, often croc-like reptiles descending from certain long-snouted younginids, like the BPI-2871 specimen (Fig. 2). Doswellia (Fig. 2) is closely related to choristoderes, splitting off at the base to form its own clade. Diandongosuchus likewise split off early, giving rise to later parasuchids (phytosaurs), proterochampsids and chanaresuchids.

Many from this varied clade of pararchosauriformes had nostrils shifted back from the snout tip, reaching an acme with parasuchians. Champsosaurus (Figs. 1, 2) was different. The naris was located at the very tip, probably to act as a snorkel, in order to breathe without surfacing. Given the unusual morphology of the snout tip, it’s very possible that the reversion to the tip was a secondary adaptation.

Figure 1. Neochoristoderes including Champsosaurus, Simoedosaurus and Ikechosaurus.

Figure 1. Neochoristoderes including Champsosaurus, Simoedosaurus and Ikechosaurus. Premaxilla in yellow. Nasals in pink. Lacrimals in orange. The prefrontals were fused to the nasals. Note: the largest genus here is the most primitive with lateral temporal fenestra oriented laterally and the nares still dorsal on the rostrum.

The identification of the rostral bones in Champsosaurus is controversial. Here we’ll look at some heretical labels for traditional paradigms.

Figure 2. Various choristoderes and their kin with a focus on the bones surrounding the naris and comprising the snout.

Figure 2. Various choristoderes and their kin with a focus on the bones surrounding the naris and comprising the snout. The nostrils migrate posteriorly by convergence in Lazarussuchus and Diandongosuchus.

Traditionally
In Champsosaurus (Fig. 1) the dorsal medial bone is traditionally considered the nasal and the paired bones following it are considered the prefrontals. However if you look at all the closest kin to Champsosaurus it becomes clear that the paired bones remain traditional nasals. The prefrontals are simply missing, likely due to fusion with the nasals. That means the tooth-bearing portions of the premaxilla wrapped completely around the rostrum and nares until they came into contact with the ascending process of the premaxilla, which extends beyond the naris in many related taxa.

Did Champsosaurus once have an antorbital fenestra?
Related taxa, including Diandogosuchus and Doswellia had an antorbital fenestra and there are signs of a nascent or vestigial antorbital fenestra in certain Champsosaurus (Fig. 3). If it’s there, it’s tiny, but worth searching for.

Figure 3. The rostrum of a champsosaur color coded to identify the premaxilla (yellow), nasals (pink), prefrontals (purple) and lacrimals (orange). The vestigial or nascent antorbital fenestrae are in black, along with the snout-tipped nares (at far right).

Figure 3. The rostrum of a champsosaur color coded to identify the premaxilla (yellow), nasals (pink), prefrontals (purple) and lacrimals (orange). The vestigial or nascent antorbital fenestrae are in black, along with the snout-tipped nares (at far right). If anyone has better data, please send it along.

Choristoderes are underrepresented in the fossil record.
So are doswellids and basal parasuchians. What this means, with present data, is basal taxa appear to be large forms, which goes against the grain of evolutionary patterns. These named taxa are all quite derived at their first appearance. I’m guessing we’re likely to find smaller basal and transitional forms, more like the BPI-2781 specimen (Fig. 2) as they become known.

It’s also interesting that the largest choristodere, Simoedosaurus (Fig. 1) has the more primitive skull, with a dorsal set of nares and more laterally-oriented lateral temporal fenestra. The smaller Champsosaurus has the more derived snout tip and more dorsally open lateral temporal fenestrae.

Popping paradigms is what we do here.
If you have data that supports other positions, please send them forward.

Updated were made to today to the post on Varanosaurus and archosauromorph diapsid origins.

What are Choristoderes? (you know…Champsosaurus, Cteniogenys, Doswellia, etc.)

The Choristordera constitute a clade of elongated aquatic to semi-aquatic, lizard-like to croc-like diapsid reptiles. Traditional taxa include: Champsosaurus, Cteniogenys, Lazarrusuchus and Hyphalosaurus. The first two-headed fossil reptile came from this clade.

What Wiki Sez:
Cladists have placed [choristoderes] between basal diapsids and basal  archosauromorphs but the phylogenetic position of Choristodera is still uncertain. It has also been proposed that they represent basal lepidosauromorphs.”

So we have an enigma taxa, an ideal opportunity to use the large study to narrow down choristodere outgroup relations.

Several choristoderes

Figure 1. Several choristoderes (in white), their predecessor and sisters (in yellow).

Choristoderes are Pararchosauriformes
The large study nested choristoderes within the Archosauriformes and within the Pararchosauriform branch between Youngoides (the RC91 specimen) and Proterochampsa.

A section of the large study focusing on choristodere relations.

Figure 2. A section of the large study focusing on choristodere relations.

Doswellia was also a Choristodere
Doswellia (Weems 1980) has been considered an enigma taxon, different enough from all other known taxa to create more questions than answers. Dilkes and Sues (2009) proposed a nesting with Proterochampsa, which is confirmed here.

Parsimonly Rules
Side by side, the resemblance of several choristoderes to Youngina, Doswellia and parasuchians is clear and reasonable. In the present taxon list, there is no more parsimonious nesting to be found. Think of choristoderes as successors to Youngoides (RC91 specimen), a taxon that has never been tested with choristoderes before.

The Dorsal Naris
Most choristoderes have a dorsal naris, similar to Cerritosaurus, parasuchians and Proterochampsa. Champsosaurus has a naris at the tip of it snorkel like snout. This appears to be a reversal because the premaxilla has no ascending process.

Another Appearance of the Antorbital Fenestra
This nesting highlights an important taxonomic fact: the antorbital fenestra appeared in reptiles at least four times. Parasuchians and Cerritosaurus had an antorbital fenestra. Precursors, including choristoderes, did not. This means the antorbital fenestra in parasuchians and their kin developed independently of the antorbital fenestra in Euarchosauriformes, such as Proterosuchus and its successors.

The Longevity and Variety Within the Choristodera
Choristoderes appeared in the Late Triassic, but probably originated in the Late Permian, along with their sister taxa. Some survived into the Early Miocene. Despite the longevity of this clade, relatively few modifications to the basic body plan appeared. Oh, sure, the lateral temporal fenestra disappeared in Doswellia and Lazarussuchus. The rostrum elongated in Champsosaurus. The neck elongated in Hyphalosaurus. The unguals were enlarged in Lazarussuchus, which means it was probably more terrestrial than its aquatic sisters and may have climbed trees. Doswellia was the giant of the clade, reaching 1.6 m in length, or slightly larger than Champsosaurus at 1.5 m. No choristoderes developed an herbivorous diet, a mammal-like dentition, a bipedal stance or wings.

Summary
Traditional enigmas, choristoderes were a monophyletic clade that nested between Youngoides and Parasuchia + Proterochampsa, close to the base of the Archosauriformes. Relatively conservative in morphology, choristoderes were a relatively minor presence throughout the Mesozoic and into the Cenozoic.

As always, I encourage readers to see specimens, make observations and come to your own conclusions. Test. Test. And test again.

Evidence and support in the form of nexus, pdf and jpeg files will be sent to all who request additional data.

References
Brown B 1905. The osteology of Champsosaurus Cope. Memoirs of the AMNH 9 (1):1-26. http://digitallibrary.amnh.org/dspace/handle/2246/63
Cope ED 1876. 
On some extinct reptiles and Batrachia from the Judith River and Fox Hills beds of Montana: Proceedings of the Academy of Natural Sciences, Philadelphia. 28, p. 340-359.
Dilkes D and Sues H-D 2009. 
Redescription and phylogenetic relationships of Doswellia kaltenbachi (Diapsida: Archosauriformes) from the Upper Triassic of Virginia. Journal of Vertebrate Paleontology 29(1):58-79
Evans SE and Hecht MK 1993.A history of an extinct reptilian clade, the Choristodera: longevity, Lazarus-Taxa, and the fossil record. Evolutionary Biology 27:323–338.
Foster JR and Trujillo KC 2000.
 
New occurrences of Cteniogenys (Reptilia, Choristodera) in the Late Jurassic of Wyoming and South Dakota. Brigham Young University Geology Studies 45:11-18.
Gao K-Q, Tang Z-L and Wang X-L 1999
A long-necked reptile from the Upper Jurassic/Lower Cretaceous of Liaoning Province, northeastern China. Vertebrata PalAsiatica 37:1–8.
Gilmore CW 1928. 
Fossil lizards of North America. Memoirs of the National Academy of Sciences 22(3):1-201.
Hecht MK 1992. A new choristodere (Reptilia, Diapsida) from the Oligocene of France: an example of the Lazarus effect. Geobios 25:115–131. doi:10.1016/S0016-6995(09)90041-9.
Matsumoto R and Evans SE 2010. Choristoderes and the freshwater assemblages of Laurasia. Journal of Iberain Geology 36(2):253-274. online pdf
Weems RE 1980. 
An unusual newly discovered archosaur from the Upper Triassic of Virginia, U.S.A. Transactions of the American Philosophical Society, New Series 70(7):1-53

wiki/Champsosaurus
wiki/Cteniogenys
wiki/Hyphalosaurus
wiki/Lazarussuchus