Chinlestegophis and the origin of caecilia

Yesterday Pardo et al. 2017
described two conspecific and incomplete amphibians in the lineage of caecilians, Chinlestegophis jerkinsi (DMNH 56658, DMNH 39033, Figs. 1, 3). These long-sought specimens were discovered in the late 1990s preserved in Late Triassic burrows.

This is really big news!
Congratulations to the Pardo team!!

From the abstract:
“Here, we report on a small amphibian from the Upper Triassic of Colorado, United States, with a mélange of caecilian synapomorphies and general lissamphibian plesiomorphies. We evaluated its relationships by designing an inclusive phylogenetic analysis that broadly incorporates definitive members of the modern lissamphibian orders and a diversity of extinct temnospondyl amphibians, including stereospondyls. Stem caecilian morphology reveals a previously unrecognized stepwise acquisition of typical caecilian cranial apomorphies during the Triassic. A major implication is that many Paleozoic total group lissamphibians (i.e., higher temnospondyls, including the stereospondyl subclade) fall within crown Lissamphibia, which must have originated before 315 million years ago.”

The diagnosis:
“Small stereospondyl with a combination of brachyopoid and caecilian characteristics.”  Stereospondyls were generally large, flat-skulled aquatic taxa that had simplified and rather weak vertebrae in which the intercentrum was topped by a neural arch and the pleurocentrum was reduced to absent. According to Wikipedia, “All lepospondyls have simple, spool-shaped vertebrae that did not ossify from cartilage, but rather grew as bony cylinders around the notochord.” 

This is the opposite of
Reptilomorphs, in which the pleurocentra are large and the intercentra are smaller. Reptilomorphs generally were smaller and better adapted to terrestrial environments.

In the LRT traditional stereospondyls
(Fig. 5, pink) are mid-sized basalmost tetrapods, aquatic with a weak backbone because they are not far from fish with fins. Temnospondyls have stronger limbs and stronger backbones (Fig. 5, yellow), but typically remain large and aquatic.

Reptilomorphs 
(Fig. 5, orange) tend to be smaller with stronger limbs and vertebrae and reduce their dependence on water. Both lepospondyls (including living amphibians) and reptiles arise from this clade in the LRT.

Few microsaurs
were included in the Pardo et al study (Fig. 4) and the topology of their tree is very different from the present topology. Caecilians nest with lepospondyl microsaurs in the large reptile tree (LRT, 2014).

In addition
several skull bones are identified differently here (Fig. 1) than in the Pardo et al. study (Fig. 3). Pardo et al. identify an otic notch (that hole in the temporal region). Here that appears to be the space left open after the supratemporal has popped out during taphonomy. The supraorbital bones are all re-identified and both the lacrimal and quadratojugal are now listed in the present identification of bones. Based on conversations with Pardo and others, bone identification on several taxa may be the cause of the differing tree topologies.

Figure 1. GIF movie showing the two skulls of Chinlestegophis from Pardo et al. 2017 with DGS colors applied to both along with a revised set of bone labels

Figure 1. GIF movie showing the two skulls of Chinlestegophis from Pardo et al. 2017 with DGS colors applied to both along with a revised set of bone label based on phylogenetic bracketing among the previously excluded microsaurs close to caecilians.

Outgroup taxa should help identify the bones.
Pardo et al. recover Rileymillerus and Batrachosuchus as outgroup taxa within a large clade that includes Eryops and Sclerocephalosaurus at one base and Trimerorhachis and Greererpeton at the very base. By contrast, the LRT recovers Microbrachis and ultimately Utegenia as outgroup taxa. Microsaurs, Microbrachis and Utegenia were not mentioned in the Pardo et al. report.

First step: Learn about Rileymillerus
As usual, I knew nothing about this taxon earlier this week. Now, according to the LRT Rileymillerus nests with Oestocephalus and Ophiderpeton, two other long-bodied microsaurs with round cross-section skulls, not included in the Pardo et all study.  The apparent loss or lack of bones in the temporal region may be homologous with the lateral temporal fenestra in Ophiderpeton. That’s a rare trait among basal tetrapods.

Figure 3. Rileymillerus from Bolt and Chatterjee 2000 with colors applied.

Figure 2. Rileymillerus from Bolt and Chatterjee 2000 with colors applied. Note the lack of bone on both sides of the temples in this specimen, as in Ophiderpeton. The color (DGS) identify of the bones here is not in complete accord with Bolt and Chatterjee. As you can see, the skull has many cracks, which makes finding the sutures that much more difficult.

Unfortunately
Pardo et al. excluded most of the taxa that the LRT found were most closely related to the clade Chinlestephos + (caecilians + lysorophians) That includes Microbrachis and the rest of the microsaurs. They had good reason for doing so (see below).

Figure 3. Chinlestegophis diagram. Drawings produced by Pardo et al. At left bones colored as they labeled them. At right same bone colors rearranged to fit the new interpretation. See figure 1.

Figure 3. Chinlestegophis diagram. Drawings produced by Pardo et al. At left bones colored as they labeled them. At right same bone colors rearranged to fit the new interpretation. See figure 1. The lateral temporal fenestra is interpreted here as the spot on the skull that once held the supratemporal. No related taxa have a lateral temporal fenestra in either cladogram.

The Pardo et al. skull bone labels
differ from the present interpretation (Fig. 3). Even with such massive dissonance, Pardo et al. and the LRT both nest Chinlestegophis with caecilians and not far from Rileymillerus.

How can such a thing happen??
I can’t answer that at present. It’s frankly surprising.

Figure 4. Pardo et al. cladogram nesting caecilians as ultra-derived temnospondyls.

Figure 4. Pardo et al. cladogram nesting caecilians as ultra-derived temnospondyls. Taxa also present in the LRT are highlighted to show the general mixup of taxa that the LRT separates.

The drifting of the postorbital
In most tetrapods the postorbital is one of the circumorbital bones. In caecilians and their relatives the postfrontal takes over that spot and the postorbital drifts posteriorly, still lateral to the parietal. This observation may be one of the issues attending circumorbital and temporal bone identification arguments in this clade.

Figure 5. Basal tetrapod subset of the LRT. This cladogram includes microsaurs. When given the opportunity to nest with microsaurs, caecilians do so.

Figure 5. Basal tetrapod subset of the LRT. This cladogram includes microsaurs. When given the opportunity to nest with microsaurs, caecilians do so.

In their Supplemental Info
Pardo et al. added the traits for Chinlestegophis to the dataset of Maddin et al. 2012 (who earlier described Jurassic Eocaecilia) and found Chinlestegophis nested with Rileymillerus, close to the stem frog Micromelerpeton and strong-legged Acheloma all far from the caecilians and all derived from a sister to giant Eryops. This study did include microsaurs. Lots of them! Other mismatches include nesting the large reptile Limnoscelis between Seymouria and tiny Utaherpeton and Microbrachis, taxa that share few traits with each other in the LRT. Numerous other morphological mismatches also occur In Maddin et al. Evidently no one is using scaled reconstructions in their analyses as a final check on these mismatches. In the LRT caecilians nest with similar long-bodied, tiny-limbed taxa, which some claim is due to convergence. On a similar note, the LRT lumped and separated snakes from amphisbaenids while other trees failed to do this. So perhaps convergence is not the reason here when dealing with burrowing amphibians.

Figure 6. Maddin et al. cladogram featuring only two temnospondyls from the LRT. Here Chinlestegophis does not nest with caecilians.

Figure 6. Maddin et al. cladogram featuring only two temnospondyls from the LRT. Here Chinlestegophis does not nest with caecilians and Rileymllerus nests far from Oestocephalus.

A note from Jason Pardo
restates that the Maddin et al. study “found no close relationship between Eocaecilia and lepospondyls nor did we find a close relationship between Chinlestegophis and those taxa.”

Figure 6. Living caecilian photo.

Figure 7. Living caecilian photo. Lengths range from 6 inches to 5 feet.

All three cladograms
share few major branches in common. As everyone knows by now, the major branches are the more difficult ones to determine. And, if we can’t agree on the identify of the skull bones, of specimens, the tree topologies will have a hard time finding consensus.

Wikipedia reports,
“Currently, the three prevailing theories of lissamphibian (extant amphibians) origin are:

  1. Monophyletic within the temnospondyli
  2. Monophyletic within lepospondyli
  3. Diphyletic (two separate ancestries) with apodans (=caecilians) within the lepospondyls and salamanders and frogs within the temnospondyli.”
Figure 8. Skull of Microbrachis in several views. Here is where the postorbital leaves the orbit margin and drifts posteriorly. Compare to Chinlestegophis above.

Figure 9. Skull of Microbrachis in several views. Here is where the postorbital leaves the orbit margin and drifts posteriorly. Compare to Chinlestegophis above.

So… even the experts have not come to a consensus
on basal tetrapod topologies. The LRT agrees that the lissamphibia are monophyletic within the lepospondyli, matching option #2 above. There are many aspects of caecilians that need to be interpreted in light of their phylogeny. And we’re not coming to a consensus on that. Earlier we looked at the fusion of the cheek bones in caecilians here with the extant taxon Dermophis.

References
Bolt JR and Chatterjee S 2000. A New Temnospondyl Amphibian from the Late Triassic of Texas. Journal of Paleontology 74(4):670-683.
Maddin HC, Jenkins FA, Jr, Anderson JS 2012. The braincase of Eocaecilia micro podia (Lissamphibia, Gymnophiona) and the origin of Caecilians. PLoS One 7:e50743.
Pardo JD, Small BJ and Huttenlocker AK. 2017, Stem caecilian from the Triassic of Colorado sheds light on the origins of Lissamphibia. PNAS: 7 pp. www.pnas.org/cgi/doi/10.1073/pnas.1706752114

 

Ontogenetic bone growth in the caecilian skull

Back to an old subject…
Earlier we looked at the skull of Dermophis, an extant caecilian from Mexico (Fig. 1) based on Digimorph.org images. There were comments from anamniote experts criticizing my labeling of the bones, suggesting I had a ‘magic fusion detector.’ I was encouraged to check out Wake and Hanken 1982, which documents the growth of the Dermophis skull (Fig. 2).

Figure 1. Dermophis, the extant Mexican caecilian, with bones, even if fused to one another, identified. The quadratojugal and squamosal are absent. Black and white image from Digimorph.org. Coloring the bones makes them so much easier to read and understand.

Figure 1. Dermophis, the extant Mexican caecilian, with bones, even if fused to one another, identified. The quadratojugal and squamosal are absent. Coloring the bones makes them so much easier to read and understand. Skull from Digimorph.org and used with permission.

Wake and Hanken discuss
some of the earlier hypotheses regarding the origin of the skull bones in caecilians. “The belief of Marcus et al, (’35) that the well-developed skull of caecilians is a retained primitive feature has been challenged by many authors, however, all of whom interpret the stegokrotaphy of the caecilian skull as being secondarily derived from a reduced skull typical of other Recent amphibians.”

Unfortunately for Wake and Hanken,
the publication of Eocaecilia (Jenkins and Walsh 1993; Eaerly Jurassic, 190 mya) came eleven years later. That settled the issue.

Figure 1. Dermophis skull elements according to Wake and Hanken 1982.

Figure 2. Dermophis skull elements according to Wake and Hanken 1982. Two of the larger growth series specimens  are shown here,  Red = pterygoid/quadrate. Also shown are the source of the fused bones based on phylogenetic relationship to Acherontiscus. Note the green ellipse = supratemporal, as in Eocaecilia.

Eocaecilia retains
the supratemporal and postfrontal, two bones thought by Wake and Hanken to have been absent in recent amphibians including caecilians. However, the elliptical supratemporal and the strip-like postfrontal both become temporarily visible in the 6.85 cm immature skull and then become fused to what Wake and Hanken label the squamosal. Their squamosal encircles the tiny orbit. Squamosals usually do not do that on their own, as everyone familiar with tetrapods knows. It doesn’t even contact the squamosal in Eocaecilia.

Figure 1. Eocaecilia skull with original and new bone identifications based on comparisons to sister taxa listed here. Like Brachydectes, the jaw joint has moved forward, beneath the jugal now fused to the quadratojugal creating a long retroarticular process, otherwise rare in amphibians. Also rare is the fusion of the squamosal with the postorbital.

Figure 3. Eocaecilia skull with original and new bone identifications based on comparisons to sister taxa listed here. Like Brachydectes, the jaw joint has moved forward, beneath the jugal now fused to the quadratojugal creating a long retroarticular process, otherwise rare in amphibians. Also rare is the fusion of the squamosal with the postorbital.

Wake and Hanken reported:
“Our analysis of skull development in Dermophis has several implications for this controversy. First, as presented above, we did not observe several of the embryonic ossification centers whose supposed presence has been used to ally caecilians and early amphibians, particularly the microsaurs.” Again, they did not have the blueprint of Eocaecilia to work with, as we do now. They did not mention the microsaur, Acherontiscus (Carroll 1969; Namurian, Carboniferous; Fig. 4), in their paper. This taxon phylogenetically and chronologically precedes caecilians in the large reptile tree (LRT). Microbrachis is also related, but has a shorter torso and longer legs than Acherontiscus and Eocaecilia.

Figure 4. Acherotisicus has large cheek bones (squamosal, quadratojugal) that appear to fuse in Eocaecilia and Dermophis.

Figure 4. Acherotisicus has large cheek bones (squamosal, quadratojugal) that appear to fuse in Eocaecilia and Dermophis.

Earlier I used the term bone ‘buds’
to represent small ossification centers from which the adult skull bone would eventually develop. This term caught some flak, but as you can see (Fig. 2) the adult skull bones do indeed develop from smaller ‘buds’.

Wake and Hanken concluded:
“We heartily concur with the idea of a long and separate evolutionary history for caecilians, independent of frogs and salamanders, as has been expressed by Carroll and Currie (’75). However, the resemblances between the cranial morphology of caecilians and that of their purported ancestors, the microsaurs, are only superficial, and many significant differences remain. Further, there are real differences in the postcranial elements, which were not within the purview of Carroll and Currie’s study. Based on our observations of skull development in Dermophis mexicanus, we believe that there is now little evidence for the hypothesis of primary derivation of the caecilian skull from any known early amphibian group.”

So Wake and Hanken gave up —
but this was before the advent of widespread computer-aided phylogenetic analysis, Now, like flak itself, you don’t have to actually hit a target. You can get really close and still knock it down. So ‘superficial’ resemblances, if nothing else in the gamut of included taxa comes closer, become homologies. That’s what happens in the LRT.

Based on what Wake and Hanken 1982 wrote,
skull buds are not apparent. Based on what Wake and Hanken 1982 traced, skull buds for all pertinent bones are indeed present.

And caecilians are cemented down
as living microsaurs close to Eocaecilia, Acherontiscus and Microbrachis based on morphology, phylogeny and ontogeny.

References
Jenkins FA, Walsh DM and Carroll RL 2007. Anatomy of Eocaecilia micropodia, a limbed caecilian of the Early Jurassic. Bulletin of the Museum of Comparative Zoology 158(6): 285-366.
Jenkins FA and Walsh M 1993. 
An Early Jurassic caecilian with limbs. Nature 365: 246–250.
Marcus H, Stimmelmayr E and Porsch G 1935. Beitrage zur Kenntnis der Gymnophionen. XXV. Die Ossifikation des Hypogeophisschddels. Morphol. Jahrb. 76;375-420.
Wake MH and Hanken J 1982. Development of the Skull of Dermophis mexicanus (Amphibia: Gymnophiona), With Comments on Skull Kinesis and Amphibian Relationships. Journal of Morphology 173:203-222.

Dermophis, an extant caecilian gets the DGS treatment

Sometimes bones disappear.
Other times bones become fused to one another. The extant caecilian Dermophis (Fig. 1) might demonstrate one or the other or both. Coloring the bones helps to interpret and explain their presence despite the absence of sutures due to fusion or loss.

Figure 1. Dermophis, the extant Mexican caecilian, with bones, even if fused to one another, identified. The quadratojugal and squamosal are absent. Black and white image from Digimorph.org. Coloring the bones makes them so much easier to read and understand.

Figure 1. Dermophis, the extant Mexican caecilian, with bones, even if fused to one another, identified. The quadratojugal and squamosal are absent. Black and white image from Digimorph.org. Coloring the bones makes them so much easier to read and understand.

Dermophis mexicanus (Mexican caecilian, Peters 1880; extant) The nasal and premaxilla are fused. The maxilla, lacrimal, prefrontal and palatine are fused. The occipital elements and the paraspheniod are fused (= Os basale). The parietal and postparietal are fused. The jugal, squamosal, postfrontal and postorbital are fused. The dentary and surangular are fused. The splenial, articular and angular are fused. The pterygoid and quadrate are fused.

The cheek bones are traditionally labeled squamosals, but that may not be the whole story here. Different from nearly all other basal tetrapods (including other amphibians), caecilians shift the jaw joint forward, creating a large retroarticular process of the posterior mandible.

Dermophis lives in humid to dry soils beneath leaf-litter, logs, banana or coffee leaves and hulls or similar ground cover. It is viviparous.

Ontogeny should tell
The true identity of skull bones should be able to be determined by watching their growth from small disconnected bone buds in the embryo. Unfortunately, the references I’ve seen don’t make that growth clear in all cases. So, I’m stuck, for the present, with comparative anatomy within a phylogenetic framework that nests caecilians with Acherontiscus (Fig. 4) and kin, which have large and separate cheek bones.

FIgure 2. Eocaecilia has small limbs and a substantial tail.

FIgure 2. Eocaecilia has small limbs and a substantial tail. The tabular may be absent here unless it, too, is fused to the postorbital/squamosal. The tabular is tiny in Dermophis and probably useless.

Limbs and limb girdles
are absent in all extant caecilians and the majority of species also lack a tail. They have a terminal cloaca, like an earthworm. Limbs are vestigial in Eocaecilia (Fig. 2), and a substantial tail is present.

Figure 1. Eocaecilia skull with original and new bone identifications based on comparisons to sister taxa listed here. Like Brachydectes, the jaw joint has moved forward, beneath the jugal now fused to the quadratojugal creating a long retroarticular process, otherwise rare in amphibians. Also rare is the fusion of the squamosal with the postorbital.

Figure 3. Eocaecilia skull with original and new bone identifications based on comparisons to sister taxa listed here. Like Brachydectes, the jaw joint has moved forward, beneath the jugal now fused to the quadratojugal creating a long retroarticular process, otherwise rare in amphibians. Also rare is the fusion of the squamosal with the postorbital. Note the reduced supratomporal. here and in Dermophis.

The tentacle
Extant caecilians have a unique chemosensory organ located on the head called the tentacle. The tentacle exits the skull through the tentacular foramen (looks like an antorbital fenestra) located between the nares and orbit. Eocaecilia lacks this foramen (Fig. 3).

Figure 4. Acherotisicus has large cheek bones (squamosal, quadratojugal) that appear to fuse in Eocaecilia and Dermophis.

Figure 4. Acherotisicus has large cheek bones (squamosal, quadratojugal) that appear to fuse in Eocaecilia and Dermophis.

References
Peters WCH 1880 “1879”. Über die Eintheilung der Caecilien und insbesondere über die Gattungen Rhinatrema und Gymnopis. Monatsberichte der Königlichen Preussische Akademie des Wissenschaften zu Berlin 1879: 924–945.

Image above from Digimorph. org and used with permission.

wiki/Dermophis