The Origin of Mammals: Rowe 1988

Rowe 1988
provided a list of skeletal traits found in mammals not found in their proximal outgroups. Here they are broken down into digestible categories. Noteworthy are the many traits associated with improvements and refinements to hearing and smelling. Noticeable by their absence are any dental traits.

Facial

  1. Premaxilla internasal process absent (external nares confluent
  2. Ethmoid and maxillary turbinals ossified
  3. Internasal septum ossified
  4. Ossified quadratojugal absent
  5. Sclerotic ossicle absent

Palatal

  1. Ectotympanic horizontal (former reflected lamina rotates from vertical
  2. Squamosal suspensorial notches absent – sites of former connections to quadrate and quadratojugal
  3. Cribiform plate (ethmoid ossifies below olfactory bulbs)
  4. Pterygoid transverse process vestigial (muscles now fill the gap)
  5. Tegmen tympani (thin plate of bone spread over the cochlear capsule forming a new side wall for the cranium)
  6. Hyoid arch evolves to become petrosal bridge

Occipital

  1. Occipital condyles expanded upwards and laterally, far apart from one another
  2. Hindbrain greatly expanded overlies fenestrae vestibuli
  3. Paroccipital process directed ventrally (no longer sloping ventrolaterally)
  4. Pneumatic mastoid process (no longer solid)
  5. Styloid process – no longer a separate bone, the stylohyal fuses the otic capsule, joining the paroccipital process
  6. Craniomandibular joint positioned anterior to fenestra vestibuli (hearing organ opening)

Mandible

  1. Craniomandibular joint formed only by squamosal and dentary
  2. Meckelian sulcus (trough) enclosed – when open it held the post dentary elements
  3. Coronoid bone vestigial or absent – the dentary takes over
  4. Splenial vestigial or absent
  5. Articular, prearticular, surangular and angular suspended from the skull (as tiny ear bones and ectotympanic bulla respectively)

Axial

  1. Proatlas not ossified
  2. Atlas intercentrum and neural arches fused to form one ring-like bone, vertebra #1.
  3. Atlas rib absent (actually fused to the atlas)
  4. Axis prezygopophyses absent
  5. Postaxial cervical ribs fused to vertebrae

Appendicular

  1. Styloid processes on dstial ends of radius, tibia and fibula
  2. Patella present along with patellar facet on femur
  3. Entocuneiform–Hallucial (distal tarsal 1 and m1.1) articulation saddle-shaped permitting greater mobility
  4. Secondary ossifications on long bones and girdles – ossified joints
  5. Flexor sesamoids

Under this guidance
and prior to the use of software in cladisitic analysis Rowe 1988 indicated that
“Morganucodontidae, Kuehneotherium, Dinnetherium, Sinoconodon and Haramiyidae can no longer be considered mammals.” In Rowe’s tree Multituberculata nest between monotremes and metatherians. (Contra Novacek 1997, who nested that clade outside the Mammalia.)

The LRT does not agree with parts of this topology
In the LRT haramiyidans nest with multituberculates, both with rodents. There are no pre-rodent, pre-placental or pre-mammal taxa with such derived traits. Attempts to put a cynodont-like middle ear on the multituberculate Megaconus are largely the product of hope, bias and imagination, not data.

Remember
Living monotremes have tiny ear bones below and internal to the mandible, distinct from placentals and marsupials that have tiny ear bones just posterior the jaw joint. This indicates that monotremes had a separate, but convergent (parallel) evolutionary history with regard to the tiny ear bones. In the LRT. Kuehneotherium nests at the base of the monotremes and thus within Mammalia, at its base. Based on the very derived character of all monotremes, including Kuehneotherium, the very first mammals had a much earlier origin.

According to Rowe 1988
Phascolotheriium bucklandi
(Middle Jurassic, Owen 1838, Clemens et al. 1977) is the oldest known mammal.  Amphitherium (de Blainville 1838) is from the same strata. Both were discovered within the first few decades of modern British paleontology. Unfortunately there are not enough traits in Phascolotherium to nest it in the LRT without massive loss of resolution.

References
Butler P M Clemens, W. A. (2001). Dental Morphology of the Jurassic Holotherian Mammal Amphitherium, with a Discussion of the Evolution of Mammalian Post-Canine Dental Formulae. Palaeontology. 44 (1): 1–20.
Novacek MJ 1997. Mammalian evolution: An early record bristling with evidence. Current Biology 7(8):pR489–R491. DOI: http://dx.doi.org/10.1016/S0960-9822(06)00245-4 
Owen R 1838.
On the jaws of the Thylacotherium prevostii (Valenciennes) from Stonesfield. Proceedings of the Geological Society of London 3, 5–9.
Rowe T 1988.
Definition, diagnosis, and origin of Mammalia. Journal of Vertebrate Paleontology 8(3):241-264.

Advertisements

Liaoningvenator: Bird-like troodontid? Or troodontid-like bird?

Shen et al. 2017 describe
a new troodontid, Liaoningvenator curriei (DNHM D3012; Dalian Natural History Museum; Figs. 1-2; Early Cretaceous), they nest Liaoningvenator outside of the Aves (birds).

Figure 1. Liaoningvenator has a long neck and short torso. It nests as a secondarily flightless bird in the LRT, rather than as a troodontid.

Figure 1. Liaoningvenator has a long neck and short torso. It nests as a secondarily flightless bird in the LRT, rather than as a troodontid.

From the abstract:
“A new troodontid, Liaoningvenator curriei gen. et sp. nov., is described based on a complete skeleton from the Early Cretaceous Yixian Formation of Beipiao City, Liaoning Province. It bears the following characteristics of Troodontidae: numerous and more closely appressed maxillary and dentary teeth; the teeth markedly constricted between the roots and crowns; the nutrient foramina in groove on the external surface of dentary; distal caudal vertebrae having a sulcus on the dorsal midline rather than a neural spine. Unlike other troodontids, Liaoningvenator exhibits a sub-triangular ischial boot in lateral view and slender ischial obturator process; transition point in caudal vertebrae starts from the seventh caudal vertebra. A phylogenetic analysis recovers Liaoningvenator and Eosinopteryx as sister taxa that belong to the same clade.”

Figure 2. Troodontid-like birds and bird-like troodontids shown together to scale.

Figure 2. Troodontid-like birds and bird-like troodontids shown together to scale. Note the robust hind limbs  in the secondarily flightless birds, Jianianhualong and Liaoningvenator.

By contrast,
the large reptile tree (LRT, 1011 taxa) nests Liaoningvenator with Jianianhualong as a large flightless basal sapeornithid bird—and all birds nest within the Troodontidae. Size-wise Liaoningvenator is midway between the smaller Archaeopteryx recurva (Fig. 2) and the larger Jianianhualong. So this might be a transitional taxon between the two.

Unrelated
Eosinopteryx (Fig. 2) continues to nest outside of Aves (birds). Distinct from Eosinopteryx, Liaoningvenator has a much shorter torso and much longer neck, as in other birds. Like Jianianhualong metarsal 4 is longer than 3 in Liaoningvenator, among many other traits (see below). Shen et al. did not mention Jianianhualong, probably because the two taxa were published within a few weeks of each other. You might remember earlier Xu et al. 2017 also nested Jianianhualong with the non-avian troodontids. Shen et al. included Sapeornis in their phylogenetic analysis. Not sure why they nested apart in the LRT.

A reconstruction of the Liaoningvenator skull
(Fig. 2) has a large openings and gracile bones. What Shen et al. identified as a maxillary foramen is identified here as the base of the naris. The in situ tail curls anteriorly and several caudal vertebrae are visible over the torso.

From the Shen et al. diagnosis:
“A new troodontid dinosaur bears the following unique combination of characters including autapomorphies indicated with an asterisk and new characters indicated with a double asterisk: prominent slender triradiate postorbital*; deltopectoral crest distinctly extended to the half of the humeral shaft*; no posterior process on the dorsodistal end of ischium**; slender obturator process of ischium**; manual phalanx I-1 longer than metacarpal II**, the length ratio of phalanx I-1 to metacarpal II about 1.49**; the width of metatarsus distally distinctly decrease**; transition point in caudal series starts from the seventh caudal vertebra**.

Troodontid or not?
The large flightless basal birds share a long list of traits in common with troodontids and a few that show they are distinct. Here is a list of the differences between bird-like troodontids, like Sinornithoides and Anchiornis, and the troodontid-like sapeornithid birds, like Jianianhualong and Liaoningvenator.

Liaoningvenator bird traits not shared with non-avian troodontids:

  1. Ventral aspect of premaxilla > 1/3 preorbit length
  2. Ascending process of premaxilla extends beyond naris and contacts frontals (nasal separated)
  3. Lacrimal deeper than maxilla
  4. Major axis of naris 30-90º
  5. Posterolateral premaxilla absent (also in Xiaotingia and Eosinopteryx)
  6. Nasals not longer than frontals (also in Xiaotingia and Eosinopteryx)
  7. Antorbital fenestra without fossa
  8. Manual mc2 and 3 do not align with joints on digit 1
  9. Metatarsal 5 not shorter than pedal digit 5

Shifting
Liaoningvenator and Jianianhualong to Sinornithoides adds 14 steps.

Paul 2002
considered the possibility of secondarily flightless (neoflightless) birds, unfortunately without the benefit of a phylogenetic analysis. Paul wrote: “Reversal normally associated with loss of flight is observed in ornithomimids, therizinosaurs and dromaeosaurs.” The LRT found possibly volant bird-like taxa associated with therizinosaurus (Rahonavis), Ornitholestes (microraptorids) and troodontids (birds), but not ornithomimids (related to Compsognathus) and dromaeosaurs (related to Shuvuuia).

Paul wrote:
“The less sharply flexed, broad coracoids of flightless birds recapitulate the dino-avepod condition. The loss of any sternal keel and shortening of the arms area also normal reversals for flightless birds. The semilunate carpal block and arm folding mechanism…are sometimes lost in flightless birds.”

References
Paul G 2002. Dinosaurs of the Air. Johns Hopkins Press
Shen C-Z, Zhao B, Gao C-L, Lü J-C and Kundrat 2017. A New Troodontid Dinosaur (Liaoningvenator curriei gen. et sp. nov.) from the Early Cretaceous Yixian Formation in Western Liaoning Province. Acta Geoscientica Sinica 38(3):359-371.
Xu X, Currie P, Pittman M, Xing L, Meng QW-J, Lü J-C, Hu D and Yu C-Y 2017. Mosaic evolution in an asymmetrically feathered troodontid dinosaur with transitional features. Nature Communications DOI: 10.1038/ncomms14972.

Pseudhesperosuchus fossil photos

Earlier I used
Greg Paul and José Bonaparte drawings of the basal bipedal croc Pseudhesperosuchus Bonaparted 1969) for data on this taxon. The specimen has some traits that lead toward the secondarily quadrupedal Trialestes. Together they are part of a clade that is closer to basal dinosaurs than traditional taxa paleontologists have been working with.

The drawings were great,
but I wondered what the real material looked like…and more importantly, what was real and what was not.

A recent request to
the curators at Miguel Lillo in Argentina was honored with a set of emailed jpegs from their museum drawers (Fig.1), for which I am very grateful. These were traced in line and color and reassembled with just a few unidentified parts left over (Fig. 2).

Figure 1. GIF movie of the skull of Pseudhesperosuchus showing the original drawing, the fossil and DGS tracings of the bones.

Figure 1. GIF movie of the skull of Pseudhesperosuchus showing the original drawing, the fossil and DGS tracings of the bones.

Pseudhesperosuchus jachaleri (Bonaparte 1969 Norian, Late Triassic ~210mya, ~1 m in length, was derived from a sister to Junggarsuchus and  Lewisuchus and was at the base of a clade that included Trialestes on one branch and the Dinosauria on the other branch.

Figue 1. A new reconstruction of the basal bipedal croc, Pseudhesperosuchus based on fossil tracings. Some original drawings pepper this image. Note the interclavicle, missing in dinosaurs and the very small ilium, only wide enough for two sacrals. The posterior dorsals are deeper than the anterior ones.

Figue 2. A new reconstruction of the basal bipedal croc, Click to enlarge. Pseudhesperosuchus based on fossil tracings. Some original drawings pepper this image. Note the interclavicle, missing in dinosaurs and the very small ilium, only wide enough for two sacrals. The posterior dorsals are deeper than the anterior ones.

Much larger and distinct from Lewisuchus,
the skull of Pseudhesperosuchus had a smaller antorbital fenestra, an arched lateral temporal fenestra, a deeper maxilla and a large mandibular fenestra. The seven cervicals were attended by robust ribs.

The scapula and coracoid were each rather slender and elongated. An straight interclavicle was present. The forelimbs were long and slender. The radiale and ulnare were elongated, a croc trait. Only three metacarpals and no digits are known.

The ilium was relatively small, but probably longer than tall and not perforated. The femur remained longer than the tibia. The tarsus, if that astragalus is identified correctly, included a simple hinge ankle joint. Only two conjoined partial metatarsals are known.

There is a small box
full of little sometimes interconnected squares among the Pseudhesperosuchus material (Fig. 2, aqua colored). I’m guessing that those are osteoderms, and if so, were probably located along the back. These would have helped keep that elevated backbone from sagging in this new biped.

The improvements in the Pseudhesperosuchus data
changed a few scores, but did no change the tree topology. The large reptile tree (LRT) can be seen here.

It’s good to see what Pseudhesperosuchyus really looked like,
— or at least get a little closer to that distant ideal. Size-wise and morphologically, this largely complete specimen is closer to the basal dinosaur outgroup than any other currently included in the LRT. And yet it is also distinctly different as it shares several traits with Trialestes unknown in any dinosaur. As a denizen of the Late Triassic, Pseudhesperosuchus represents a radiation that occurred tens of millions of years earlier, probably in the Middle Triassic. None of this clade survived into the Jurassic, as far as we know.

References
Bonaparte JF 1969. Dos nuevos “faunas” de reptiles triásicos de Argentina. Gondwana Stratigraphy. Paris: UNESCO. pp. 283–306.

Where is the rest of Lanthanolania?

It was back in 2011
when the post-crania of Lanthanolania (Fig. 1) was reported in an abstract by Modesto and Reisz. Prior to that, in 2003, only the skull was described by the same authors. Over the last six years the post-crania of Lanthanolania has not been published.

From the 2011 SVPCA abstract:
“The evolutionary history of Diapsida during the Palaeozoic Era is remarkably poor. Following the reclassification of the Early Permian Apsisaurus witteri as a synapsid last year, only a handful of taxa span the large temporal gap between the oldest known diapsid Petrolacosaurus kansensis and the Late Permian neodiapsid Youngina capensis. These include two Middle Permian neodiapsids, the recently described Orovenator mayorum from Oklahoma, USA, and Lanthanolania ivakhnenkoi from the Mezen region, northern Russia. A recently collected, nearly complete skeleton of Lanthanolania permits a thorough reexamination of the phylogenetic relationships of these two taxa.

“Phylogenetic analysis of 188 characters and 30 diapsid taxa positions these two small forms as stem saurians and the oldest known neodiapsids (recently redefined by the authors as the sister taxon of Araeoscelidia). Interestingly, our results suggest that the lower temporal bar was lost by the ancestral neodiapsid relatively soon after the evolution of the diapsid temporal morphology, and conversely, that the temporal configuration of the Late Permian Youngina capensis is a secondary condition. In addition, the skeletal anatomy of Lanthanolania provides evidence of limb proportions that suggest that this small reptile is the oldest known bipedal diapsid.”

Figure 1. Kuehneosaurid skulls from Palaegama to Coelurosauravus and Mecistotrachelos, and to Lanthanolania, Pamelina, Kuehneosaurus, Icarosaurus and Xianglong. Some of these taxa were not previously recognized as kuehneosaurids or their ancestors.

Figure 1. Kuehneosaurid skulls from Palaegama to Coelurosauravus and Mecistotrachelos, and to Lanthanolania, Pamelina, Kuehneosaurus, Icarosaurus and Xianglong. Some of these taxa were not previously recognized as kuehneosaurids or their ancestors.

Earlier (2011) the large reptile tree (LRT) nested Lanthanolania with the so-called rib gliders between Coelurosauravus and Icarosaurus. Back then we looked at those issues here.

Modesto and Reisz (2003) had a hard time
nesting Lanthanolania and considered it ‘enigmatic’. The closest they came was to nest Lanthanolania at the base of the lepidosauriformes (Rhynchocephalia + Squamata) and in other tests, with Coelurosauravus, which they split apart from the lepidosauriformes by adding intervening unrelated ‘by default’ taxa.

Unfortunately
with their small taxon list, Modesto and Reisz (2003) did not recover the basal split among reptiles that had occurred between the new Lepidosauromorpha and Archosauromorpha at Gephyrostegus + kin at the earliest Carboniferous. Thus the formerly monophyletic clade Diapsida is diphyletic in the LRT. Modesto and Reisz  mixed taxa from the two major clades and that muddied their results. Parts of their results were essentially correct, just unintelligible due to the addition of unrelated intervening archosauromorph basal diapsids.

Traditional paleontology
has likewise never nested coelurosauravids with kuehneosaurids, like Icarosaurus, perhaps based in part on the rib/dermal rod issue.

Problems and guesses:

  1. “Phylogenetic analysis of 188 characters and 30 diapsid taxa positions these two small forms as stem saurians and the oldest known neodiapsids (recently redefined by the authors as the sister taxon of Araeoscelidia).” — Sauria (= last common ancestor of archosaurs and lepidosaurs), is a junior synonym for Reptilia in the LRT. Neodiapsida (= includes all diapsids apart from araeoscelidians (= Petrolacosaurus and Araeoscelida)) or all taxa more closely related to Youngina than to Petrolacosaurus. Thus, in their thinking, Sauria is a clade within Neodiapsida. Modesto and Reisz do not yet recognize that Diapsida is no longer a monophyletic clade. In the LRT Orovenator and Lanthanolania are not related. The former is a basal diapsid archosauromorph. The latter is a basal lepidosauriform lepidosauromorph.
  2. “Interestingly, our results suggest that the lower temporal bar was lost by the ancestral neodiapsid relatively soon after the evolution of the diapsid temporal morphology,” — According to the LRT, the lower temporal bar was not lost nor was it present in the lepidosauromorph ‘rib’ gliders, including Lanthanolania. By contrast, Orovenator is one of the most basal archosauromorphs with an upper temporal fenestra.  Petrolacosaurus is older.
  3. “and conversely, that the temporal configuration of the Late Permian Youngina capensis is a secondary condition.” — In the LRT, it is not a secondary configuration, but is derived from basal diapsid taxa like Orovenator.
  4. “In addition, the skeletal anatomy of Lanthanolania provides evidence of limb proportions that suggest that this small reptile is the oldest known bipedal diapsid.” — I can only guess why they promoted this hypothesis: short torso and long hind limbs? Icarosaurus has such proportions. So does Kuehneosaurus. So does their last common ancestor, Palaegama (Fig. 2) which lacks wire-like dermal ossifications.
Figure 3. Palaegama, close to the origin of all Lepidosauriformes.

Figure 2. Palaegama, close to the origin of all Lepidosauriformes.

The question today is
where is the paper that describes the above-mentioned post-crania of Lanthanolania? Is the post-crania definitely referable?

If the referred specimen came from similar sediments
the matrix was described in 2003 as ‘extremely hard to work with’. Perhaps it is still being worked on. Or it has been shelved.

Phylogenetic bracketing
indicates that the new specimen might or should have wing-like wire/rod dermal elements, like those found in both Coelurosauravus and Icarosaurus, but traditionally considered ribs in Icarosaurus. They are not ribs, as we learned earlier here. The real ribs are short and fused to the vertebrae, appearing to be long transverse processes, but no related taxa have long transverse processes and not all of the ribs are fused to the vertebrae, betraying their identity. Since a mass of dermal rods was not mentioned in the abstract, one  wonders if the new specimen was actually closer to Palaegama than to Lanthanolania?

Late news from Sean Modesto about Lanthanolania:
“The project is currently in the hands of Dr. Reisz. No “ETA” as yet!”

Problems like this one
are a good reason to include the taxa the LRT suggests one include in smaller, more focused studies.

References:
Modesto SP and Reisz RR 2003. An enigmatic new diapsid reptile from the Upper Permian of Eastern Europe. Journal of Vertebrate Paleontology 22 (4): 851-855.
Reisz RR and Modesto SP 2011. The neodiapsid Lanthanolania ivakhnenkoi from the Middle Permian of Russia, and the initial diversification of diapsid reptiles.SVPCA abstract published online.

 

Maybe horses are just tall, skinny, hornless rhinos…

Short one today,
With yesterday’s addition of two more basal rhinos to the large reptile tree (LRT 1010 taxa) maybe it’s time to change our thinking from ‘either horse or rhino’ to ‘horses are a type of rhino’. We know they are related. Maybe they are more intimately related than we first thought. That would make indricotheres like Paraceratherium giant hornless rhinos again, if you prefer it that way.

Figure 3. Subset of the LRT with the addition of Metamynodon and Amynodon, two former rhinos.

Figure 1. Subset of the LRT with the addition of Metamynodon and Amynodon, two former rhinos.

Even though,
in the LRT (subset Fig. 1) fewer taxa intervene at present between indricotheres and horses than indricotheres and extant rhinos, like Ceratotherium. Sort of like, you know, birds are a type of dinosaur. It just takes some getting used to – creating a new mental paradigm following the present data without excluding pertinent taxa.

 

Two more odd ‘hornless rhinos’ nest slightly elsewhere in the LRT

First a little backstory
Earlier, Paracerathierium and Juxiatwo traditional hornless rhinos, nested with three-toed horses in the large reptile tree (LRT, 1009 taxa, Fig. 3).

Figure 1. Metamynodon nests with Eotitanops. It had large fangs and a bulky body like a hippo.

Figure 1. Metamynodon nests with Eotitanops. It had large fangs and a bulky body like a hippo.

Today
the giant hippo-like traditional rhino, Metamynodon planifroms (Scott and Osborn 1867; Early Eocene; 4m long), nests with Eotitanops, the basal brontothere, though not far from Ceratotherium, the white rhino.

Figure 2. Amynodon was formerly linked to Metamynodon as a basal rhino, but here nests with Mesohippus.

Figure 2. Amynodon was formerly linked to Metamynodon as a basal rhino, but here nests with Mesohippus.

And
the smaller long-necked traditional rhino, Amynodon, nests with Mesohippus, the basal horse. Both were derived from a sister to Hyracotherium, basal to both rhinos and horses.

Amynodon advenus (Marsh 1877; 1m in length; Oligocene-Eocene, 40-23 mya) was originally considered an aquatic rhino. Here it nests with Mesohippus. The long neck and other traits are more horse-like than rhino-like. Manual digit 5 was retained. The skull was deeper as in basal forms like Hyracotherium.

Figure 3. Subset of the LRT with the addition of Metamynodon and Amynodon, two former rhinos.

Figure 3. Subset of the LRT with the addition of Metamynodon and Amynodon, two former rhinos.

Traditional cladograms
nest horses separate from tapirs + rhinos. The LRT nests horses with rhinos both derived from a sister to Hyracotherium and a sister to tapirs + chalicotheres. Traditional cladograms also avoid mixing brontotheres, horses and rhinos, like we do here.

References
Marsh OC 1877. Notice of some new vertebrate fossils. American Journal of Arts and Sciences 14:249-256
Scott WB and Osborn HF 1887. Preliminary account of the fossil mammals from the White River formation contained in the Museum of Comparative Zoology. Bulletin of the Museum of Comparative Zoölogy at Harvard College 13(5):151-171.

wiki/Mesohippus
wiki/Amynodontidae
wiki/Metamynodon

Advice for would be paleontologists: stay professional!

What do I mean by ‘stay professional’?
First of all, follow accepted scientific methods. Explore a wide gamut of possible solutions. And, more to the point of this blog: If you are going to make a comment about what a paleontologist has put forth as a hypothesis, keep your comments to the subject at hand. Use data, logic, your higher brain centers. Don’t abuse the author with personal insults that reflect how your inner monkey is feeling. In the professional world those forays into negativity can be labeled ‘ad hominem attacks” and they are not tolerated in academic publications (see below). More importantly, such comments can backfire on your professional reputation.

Several readers of this blog
have sunk below their professional dignity in their comments, perhaps because they became frustrated with what was being reported. It’s okay to feel frustrated. Just don’t let that enter your comments to anyone, anywhere. Stay professional in your demeanor.

The fact that Wikipedia
has a topic devoted to ad hominem attacks and various academic publications, like PlosOne forbid it (see below), tells you that it is commonplace.

Here are a few pulled quotes
from a recent blog on the subject.

  1. Aristotle argued that the ethos of a speaker is relevant to the persuasiveness of what they have to say. (ethos = the characteristic spirit)
  2. Everyone with critiques should continue coloring inside the lines, because that works. 
  3. There is no place for naming and shaming.
  4. “Trash talk” didn’t emerge only with social media: it has always been there. Case in point: the first Astronomer Royal called Edmond Halley, “a lazy and malicious thief” who manages to be just as “lazy and slothful as he is corrupt”. (Edmond Halley is widely revered today for his discoveries as an astronomer.)
  5. Avoid the ad hominem response: Just because you take offense, is not proof that offense was intended. Trying to separate that out makes it easier to see past the words and into the actual content, and gain analytic perspective.
  6. We have a lot to learn about each other and how to communicate in ways that get ideas across without diminishing people.
  7. Resist giving in to defensive emotion as much as you can: it clouds your vision.
  8. Pushing the envelope and collaborating in the open will push science forward.

From the PlosOne comments section:
Please follow our guidelines for comments and review our competing interests policy. Comments that do not conform to our guidelines will be promptly removed and the user account disabled. The following must be avoided:

  1. Remarks that could be interpreted as allegations of misconduct
  2. Unsupported assertions or statements
  3. Inflammatory or insulting language

Finally
When you go to conferences (= symposia), as I hope you will, and you meet your peers face to face, you will want to happily greet friends and colleagues, share dinner, discussions and hypotheses. This goes so much better when you haven’t tried to shame and disparage them.