News at the base of the Amniota, part 6: Cladogram of basal lepidosauromorpha

Yesterday we looked at primitive archosauromorpha at the base of the Amniota. Today we’ll look at basal lepidosauromorpha.

Figure 1. Cladogram of basal amniotes, a subset of the large reptile tree. Dots represent phylogenetic size reductions. Bootstrap scores are shown. Archosauromorpha in gray. Lepidosauromorpha in black at the bottom. Figure 1. Cladogram of basal amniotes, a subset of the large reptile tree. Dots represent phylogenetic size reductions. Bootstrap scores are shown. Archosauromorpha in gray. Lepidosauromorpha in black at the bottom.

Figure 1. Cladogram of basal amniotes, a subset of the large reptile tree. Dots represent phylogenetic size reductions. Bootstrap scores are shown. Archosauromorpha in gray. Lepidosauromorpha in black at the bottom.

Figure 1. A new reconstruction of Gephyrostegus bohemicus. This species lived 30 million years after the origin of the Amniota in the Visean, 340 mya. Note the lack of posterior dorsal ribs. This trait shared by all basalmost amniotes, may provide additional space for massive eggs in gravid females, but is also shared with males, if there were males back then.

Figure 2. A new reconstruction of Gephyrostegus bohemicus. This species lived 30 million years after the origin of the Amniota in the Visean, 340 mya. Note the lack of posterior dorsal ribs. This trait shared by all basalmost amniotes, may provide additional space for massive eggs in gravid females, but is also shared with males, if there were males back then.

As mentioned earlier, the Amniota is divided at its base into Lepidosauromorpha (taxa closer to lepidosaurs) and Archosauromorpha. Gephyrotegus bohemicus (Fig. 2) is the last common ancestor and Silvanerpeton is the outgroup anamniote.

Figure 3. Urumqia liudaowanensis (Zhang et al. 1984) ~20 cm snout-vent length, Lower Permian.

Figure 3. Urumqia liudaowanensis (Zhang et al. 1984) ~20 cm snout-vent length, Lower Permian. Formerly considered a sister to Utegenia, an anamniote, it now nests as the basalmost of all lepidosauromorpha.

Urumqia liudaowanensis (Zhang et al. 1984) ~20 cm snout-vent length, Upper Permian, was originally considered a discosaurid seymouriamorph close to UtegeniaHere (Fig. 1) it nests at the base of the lepidosauromorph reptiles despite its late appearance in the fossil record. Note the gastalia are much wider than the dorsal ribs, likely to retain large eggs in gravid females. Distinct from G. bohemicus, Urumqia had shorter limbs, longer posterior dorsal ribs and a robust tail with elongate caudals. The palate included a larger suborbital fenestra, not homologous to later taxa with this trait. The cheek included a small lateral temporal fenestra. The carpals and tarsals are poorly ossified.

Figure 2. Bruktererpeton, a gephyrostegid and a basal lepidosauromorph amniote.

Figure 4. Bruktererpeton, a gephyrostegid and a basal lepidosauromorph amniote.

Bruktererpeton fiebigi — (Boy and Bandel, 1973; Fig. 3) is an older (Namurian/ Bashkirian, 320 Ma) sister to Gephyrostegus bohemicus (Ruta, Jefferey and Coates, 2003; Klembara et al., 2014). The pectoral girdle and limbs are more gracile. The scapula is taller. The intercentra are smaller. Other traditional amniote traits, if present, are not preserved.

Figure 3. Thuringothyris. A basal lepidosauromorph.

Figure 5. Thuringothyris. A basal lepidosauromorph.

Thuringothyris  mahlendorffae — (Boy and Martens, 1991; type: MNG 7729; (Müller et al., 2006) referred MNG 10183; Artinskian, Early Permian, 280 Ma) is half the size of Bruktererpeton and documents all traditional amniote traits. Note the derived shape of the humerus and the reduced intercentra.

Traditional amniote traits include:

  1. loss/fusion of the intertemporal
  2. absence of the otic notch
  3. loss/reduction of palatal fangs
  4. appearance/expansion of the transverse flange of the pterygoid
  5. loss of labyrinthine infolding of the marginal teeth
  6. reduction of the intercentra
  7. addition of a second sacral vertebra
  8. narrowing and elongation of the humeral shaft
  9. appearance of the astragalus from fused tarsal elements.
Figure 4. Cephalerpeton. A basal lepidosauromorph.

Figure 6. Cephalerpeton. A basal lepidosauromorph.

Cephalerpeton — (Gregory 1948) representing a new sister clade to the Captorhinomorpha, Cephalerpeton had an elongate humuerus with a narrow shaft. The much larger and later Reiszorhinus is a sister.

Figure 5. Two specimens of Concordia, a basal lepidosauromorph.

Figure 7. Two specimens of Concordia, a basal lepidosauromorph.

Concordia — (Müller & Reisz 2005, Stephanian, Late Pennsylvanian, Carboniferous, 4 cm skull length) was considered the oldest known captorhinid, but here (Fig. 1) it nests with Cephalerpeton as a sister to captorhinids.

Figure 6. Romeria texana, a basal capitorhinomorph, lepidosauromorph, amniote.

Figure 8. Romeria texana, a basal capitorhinomorph, lepidosauromorph, amniote.

Romeria texana —(Price1937) Artinskian, Early Permian, ~280 mya, ~25 mm skull length, was the basalmost captorhinid. Here (Fig, 1) the skull is wider and flatter.

Figure 6. Saurorictus, a basal lepidosauromorph in the lineage of Milleretta, compared to sister taxa.

Figure 9. Saurorictus, a basal lepidosauromorph in the lineage of Milleretta, compared to sister taxa.

Saurorictus — (Modesto and Smith 2001, SAM PK-8666, skull length ~2.2 cm, estimated total length 15 cm, Late Permian), derived from a sister to Thuringothyris, Concordia and Cephalerpeton, Saurorictus is the taxon basal to all other lepidosauromorpha including diadectomorpha, chelonia and lepidosauria. (sorry, cut off from bottom of cladogram, Fig. 1). It was considered the most complete captorhinid from the Late Permian.

Size comparisons

Figure 1. Basal amniotes to scale. Click to enlarge.

Figure 10. Basal amniotes to scale. Click to enlarge.

Here, Fig. 10, there is a size reduction in ‘second generation’ basal amniotes/basal lepidosauromorpha. You’ll note that several former anamniotes now nest within the amniota. They were judged anamniotes by the skeletal traits, not by their phylogenetic nesting, which has not been adequately tested until now.

References
Boy JA and Bandel K 1973. Bruktererpeton fiebigi n.gen.n.sp. (Amphibia: Gephyrostegida). Der erste Tetrapode aus dem Rheinisch-Westfälischen Karbon (Namur B; W-Deutschland). Palaeontographica 145: 39–77.
Boy JA and Martens T 1991. Ein neues captorhinomorphes Reptil aus dem thüringischen Rotliegend (Unter-Perm; Ost-Deutschland). Palaeontologische Zeitschrift 65 (3-4): 363–389.
Gregory JT 1948. The structure of Cephalerpeton and affinities of the Microsauria. American Journal of Science 246:550–568
Modesto SP and Smith RMH 2001. A new Late Permian captorhinid reptile: a first record from the South African Karoo. Journal of Vertebrate Paleontology 21(3): 405–409.
Müller J, Berman DS, Henrici AC, Martens T and Suminda S 2006. The basal reptile Thuringothyris mahlendorffae (Amniota:Eureptilia) from the Lower Permian of Germany. Journal of Paleontology 80:726-739.
Müller J and Reisz RR 2005. An early captorhinid reptile (Amniota: Eureptilia) from the Upper Carboniferous of Hamilton, Kansas. Journal of Vertebrate Paleontology. 25(3): 561-568.
Price LI 1937. Two new cotylosaurs from the Permian of Texas. Proceedings of the New England Zoölogical Club 16:97-102.
Zhang F, Li Y, and Wan X. 1984. A new occurrence of Permian seymouriamorphs in Xinjiang, China. Vertebrate Palasiatica22(4):294-306.

News at the base of the Amniota, part 5: Cladogram of basal archosauromorpha

Earlier here and elsewhere we looked at the origin of the Amniota. Today we’ll take a look at the cladogram (Fig. 1) and some of the taxa no one expected to see on this side of the anamniote/amniote transition series.

Figure 1. Cladogram of basal amniotes, a subset of the large reptile tree. Dots represent phylogenetic size reductions. Bootstrap scores are shown. Archosauromorpha in gray. Lepidosauromorpha in black at the bottom. Figure 1. Cladogram of basal amniotes, a subset of the large reptile tree. Dots represent phylogenetic size reductions. Bootstrap scores are shown. Archosauromorpha in gray. Lepidosauromorpha in black at the bottom.

Figure 1. Cladogram of basal amniotes, a subset of the large reptile tree. Dots represent phylogenetic size reductions. Bootstrap scores are shown. Archosauromorpha in gray. Lepidosauromorpha in black at the bottom.

As before, the Amniota is divided at its base into the new Lepidosauromorpha (taxa closer to lepidosaurs) and the new Archosauromorpha (closer to archosaurs).

Figure 1. A new reconstruction of Gephyrostegus bohemicus. This species lived 30 million years after the origin of the Amniota in the Visean, 340 mya. Note the lack of posterior dorsal ribs. This trait shared by all basalmost amniotes, may provide additional space for massive eggs in gravid females, but is also shared with males, if there were males back then.

Figure 2. A new reconstruction of Gephyrostegus bohemicus. This species lived 30 million years after the origin of the Amniota in the Visean, 340 mya. Note the lack of posterior dorsal ribs. This trait shared by all basalmost amniotes, may provide additional space for massive eggs in gravid females, but is also shared with males, if there were males back then.

Gephyrotegus bohemicus (Fig. 1, Westphalian, 310 mya) is the last common ancestor of all amniotes and Silvanerpeton (Viséan, 340 mya) is the outgroup anamniote (or very possible also an amniote).

Utegenia nests as the common ancestor of frogs, salamanders, caecelians and microsaurs.

Figure 3. Utegenia nests as the common ancestor of frogs, salamanders, caecelians and microsaurs but the only known specimens are from the Earliest Permian.

Note the placement of the seymouriamorph, Utegenia (Fig. 3), at the base of the Lepospondyli, which includes extant amphibians and microsaurs… and just outside the base of the Amniota.

Basal Archosauromorpha

Figure 3. Two specimens attributed to Eldeceeon that nest together.

Figure 4. Two specimens attributed to Eldeceeon that nest together. The lack of posterior dorsal ribs was first noticed in the holotype.

Eldeceeon rolfei  – (Smithson 1994, ~27 cm in total length, Early Carboniferous (Viséan) ~335 mya), is from the same formation that yielded Silvanerpeton and Westlothiana. Eldeceeon is known from two dissimilar specimens that nest together. They have a smaller skull and slightly shorter limbs with smaller girdles while retaining a deep ventral pelvis.

Gephyrostegus-watsoni588

Figure 5. Gephyrostegus watsoni (Westphalian, 310 mya) reconstructed. Embryo is hypothetical. Note the lack of posterior dorsal ribs.

Gephyrostegus watsoni – (Brough and Brough 1967) was originally named Diplovertebron punctatum (Watson 1926, Fig. 5), but reassigned to Gephyostegus bohemicus by Carroll (1970) despite the size difference. Carroll thought G. watsoni was a juvenile. Klembara et al. (2014) agreed. The high arched neural spines, small intercentra, and the extreme lean of the posterior skull mark this small basal amniote/gephyrostegid distinct from all others. Egg shapes were found nearby along with insects. The embryo shown is hypothetical.

Figure 4. Solenodonsaurus reconstructed.

Figure 6. Solenodonsaurus reconstructed. The largest of the basal amniotes, likely aquatic. Note the intertemporal is still present. That doesn’t matter. It still nests with amniotes.

Solenodonsaurus janenschi – (Broili 1924) Early Permian ~13 cm skull length was considered the sister to all other amniotes by all prior workers, but here Solenodonsaurus nests as a basal archosauromorph, basal to chroniosuchids.

Figure 5. Three chorniosuchids to scale.

Figure 7. Three chorniosuchids to scale.

Chroniosuchids – (Tverdokhlebova 1972) Early Permian ~7 cm skull length, were considered aberrant pre-reptiles by all prior workers, but here they nest within the Archosauromorpha. Note the convergent appearance of an antorbital fenestra.

Figure 7. Casineria reconstructed.

Figure 8. Casineria reconstructed.

Casineria kiddi – (Paton, Smithson & Clack 1999) Viséan, Carboniferous, ~335 mya). Tiny Casineria lies at the end of a phylogenetic series of decreasing size beginning with Proterogyrinus.

Figure 8. Westlothiana reconstructed.

Figure 9. Westlothiana reconstructed. The gray area is hypothetical as if gravid.

Westlothiana – (Smithson & Rolfe 1990) lived ~338 mya, earlier than any other known reptile. This reconstruction has longer anterior dorsal ribs and shorter posterior dorsal ribs than originally reconstructed. A longer torso is a different solution to egg containment.

brouffia588overall

Figure 10. Broffia reconstructed. The smallest of all basal amniotes, this could be a juvenile or just a small adult.

Brouffia orientalis – (Carroll and Baird 1972) Westphalian, Late Carboniferous, (CGH IIIB 21 c. 587) and counterpart (MP451), specimen 1 of Brough and Brough (1967) was considered very small Gephyrostegus with two sacrals and an intertemporal. Carroll (1970) considered it not congeneric. Carroll and Baird (1972) considered it a primtiive reptile with a single sacral and no intertemporal. The missing skull of the sister taxon Casineria (Fig. 8) probably looks like this one.

We’ll look at basal Lepidosauromorpha tomorrow.

References
Broili F von 1924. Ein Cotylosaurier aus der oberkarbonischen Gaskohle von Nürschan in Böhmen. Sitzungsberichte der Mathematisch-Naturwissenschaftlichen Abteilung der Bayerischen Akademie der Wissenschaften zu München 1924: 3-11.
Brough MC and Brough J 1967. Studies on early tetrapods. III. The genus Gephyrostegus. Philosophical Transactions of the Royal Society B252: 147-165.
Brough MC and Brough J 1967. The Genus Gephyrostegus. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 252 (776): 147–1
Carroll RL 1970. The Ancestry of Reptiles. Philosophical Transactions of the Royal Society London B 257:267–308. online pdf
Carroll RL 1970. The ancestry of reptiles. Philosophical Transactions of the Royal Society B257: 267-308.
Clack JA and Klembara J 2009. An articulated specimen of Chroniosaurus dongusensis and the morphology and relationships of the chroniosuchids. Special Papers in Palaeontology, 81: 15–42.
Danto M, Witzmann F and Müller J 2012. Redescription and phylogenetic relationships of Solenodonsaurus janenschi Broili, 1924, from the Late Carboniferous of Nyrany, Czech Republic. Fossil Record 15 (2) 2012, 45–59.
Klembara J, Clack J, and Cernansky A 2010. The anatomy of palate of Chroniosaurus dongusensis (Chroniosuchia, Chroniosuchidae) from the Upper Permian of Russia. Palaeontology 53: 1147-1153.
Klembara J, Clack J, Milner AR and Ruta M 2014. Cranial anatomy, ontogeny, and relationships of the Late Carboniferous tetrapod Gephyrostegus bohemicus Jaekel, 1902. Journal of Vertebrate Paleontology 34:774–792.
Laurin M and Reisz 1999. A new study of Solenodonsaurus janenschi, and a reconsideration of amniote origins and stegocephalian evolution. Canadian Journal of Earth Sciences 36:1239-1255.
Paton RL Smithson TR and Clack JA 1999. An amniote-like skeleton from the Early Carboniferous of Scotland. Nature 398: 508-513.
Schoch RR, Voig S and Buchwitz M 2010. A chroniosuchid from the Triassic of Kyrgyzstan and analysis of chroniosuchian relationships. Zoological Journal of the Linnean Society 160: 515–530. doi:10.1111/j.1096-3642.2009.00613.x
Smithson TR 1994. Eldeceeon rolfei, a new reptiliomorph from the Viséan of East Kirkton, West Lothian, Scotland. Transactions of the Royal Society of Edinburgh: Earth Sciences 84 (3-4): 377–382.
Smithson TR & Rolfe WDI 1990. Westlothiana gen. nov. :naming the earliest known reptile. Scottish Journal of Geology no 26, pp 137–138.
Tverdochlebova GI 1972. A new Batrachosaur Genus from the Upper Permian of the South Urals, Paleontol. Zh., 1972: 95–103.

News at the base of the Amniota, part 4: Keratinized epidermal scales

Earlier here, here and here we looked at various aspects of life for basal amniotes in the Viséan to the Westphalian (340-310 mya). Today we’ll look at another trait common to basal amniotes.

Figure 1. Amniote scales from Didelphis (opossum, background) and Iguana.

Figure 1. Amniote scales from Didelphis (opossum, background) and Iguana. They probably had their origin in the Viséan as basal amniotes spent less and less time in water and needed a form of waterproofing to avoid desiccation.

Phylogenetic Miniaturization and the Genesis of Keratinized Scales
Keratinized scales (Fig. 1) more or less insulate many living amniotes and all living reptiles from evaporative water loss. Anamniotes (frogs, etc.) don’t have a waterproof skin, but may have scattered osteoderms. While many mammals replace scales with fur and birds replace scales with feathers, keratinized scales are retained on the tail of the opossum and the feet of all birds. Scalation also protects against ant and termite bites.

Figure 1. A new reconstruction of Gephyrostegus bohemicus. This species lived 30 million years after the origin of the Amniota in the Visean, 340 mya. Note the lack of posterior dorsal ribs. This trait shared by all basalmost amniotes, may provide additional space for massive eggs in gravid females, but is also shared with males, if there were males back then.

Figure 2. A new reconstruction of Gephyrostegus bohemicus, this most primitive amniote preserves dorsal dermal scales. Ossified ventral scales are more common and sometimes transformed into gastralia rods.

Scale origins
Basal gnathostomes (basal fish) had ossified skin first and an ossified skeleton later. In teleosts and tetrapods the integumentary (skin) skeleton has undergone widespread reduction and/or modification (Vickaryous and Sire 2009). Sarcopterygians (stem tetrapods) had cosmoid scales, characterized by an intrinsic, interconnected canal system with numerous flask-shaped cavities and superficial pores. In Ichthyostega and other basal tetrapods, dentine, enameled, guanine and pore-canal systems were lost, leaving bone (osteoderms) as the remaining dermal element wherever present. Osteoderms are structurally quite variable and are found in a wide variety of tetrapods, including amphibians. Often they have been lost and independently regained. Temnospondyl amphibians, like Greererpeton, have a combination of thin and overlapping scales, granular pellets, and/or robust plates.

Amniote scale origins
While scales or their impressions are rarely preserved, Carroll (1969) reported some indication of dorsal epidermal scales in Gephyrostegus bohemicus (Fig.2). In Cephalerpeton Carroll and Baird (1972) reported that skin impressions had a slightly pebbly texture, but without evidence for discrete scales. Brough and Brough (1967) found ventral scales in tiny Brouffia (their specimen no. 1) and provided a similar description for the developing gastralia of Gephyrostegus. Not sure why the first and most substantial scales first appeared ventrally, rather than dorsally, where the sun shines, except that the ventral surface is in contact with the substrate.

Figure 2. Reptile hatchling.

Figure 2. Reptile hatchling about actual size. A larger surface-to-volume ratio increases the danger from desiccation unless ‘waterproofed’ with scales.

The importance of scales
In basalmost amniotes forays onto land likely increased in duration. Dermal protection from desiccation is more important in smaller amniotes due to their larger surface-to-mass ratio (Hedges and Thomas, 2001). This is especially applicable to hatchlings and juveniles, some of which may have been less than 2 cm in snout/vent length because the adults were so small. Basal amniote juveniles would have rivaled certain microsaur juveniles as the smallest tetrapods of their day, and perhaps they competed in similar niches. Scales may have given the advantage to reptiles.

With regard to microsaurs
Carroll and Baird (1968) reported, “Extremely delicate dorsal scales of elongate-oval shape are present between (and occasionally overlapping) the ribs of the better-ossified United States National Museum specimen [of the microsaur Tuditanus]. If allowance is made for their insubstantial nature, the scales of Tuditanus are essentially similar to those of ther Carboniferous microsaurs (Carroll, 1966). There is no evidence of rodlike ventral scales such as occur in other lepospondyls (Baird, 1965), or wheat-shaped gastralia like those of primitive reptiles.”

Going one step further in the middle Jurassic, tiny basal mammals traded scales for insulating hair and thicker fur (assumed by phylogenetic bracketing). On the other hand, the first Jurassic dinosaurs to preserve protofeathers, like slender Sinosauropteryx (Ji and Ji, 1996), were a meter long, so not tiny. Basal volant birds became progressively smaller.

References
Baird D 1965. Paleozoic lepospondyl amphibians.  American Zoologist 5: 287-294.
Brough MC and J Brough 1967. The Genus Gephyrostegus. Philosophical Transactions of the Royal Society London, Series B, Biological Sciences 252:47–165.
Carroll RL 1966. Microsaurs from the Westphalian B of Joggins, Nova Scotia. Proceedings of the Linnean Society of London 177: 63-97.
Carroll RL 1969. Problems of the origin of reptiles. Biological Reviews 44:393–431.
Carroll RL and Baird D 1968. The Carboniferous amphibian Tuditanus (Eosauravus) and the distinction between microsaurs and reptiles. American Museum novitates 2337: 1-50.
Carroll RL. and D Baird 1972. Carboniferous stem-reptiles of the family Romeriidae. Bulletin of the Museum of Comparative Zoology 143:321–363.
Hedges SB and R Thomas 2001. At the lower size limit in amniote vertebrates: A new diminutive lizard from the West Indies. Caribbean Journal of Science 37:168–173.
Ji Q and S Ji 1996. On the discovery of the earliest bird fossil in China (Sinosauropteryx gen. nov.) and the origin of birds. Chinese Geology 10(233): 30–33.
Vickaryous MK and Sire J-Y 2009. The integumentary skeleton of tetrapods: origin evolution, and development. Journal of Anatomy 214:441-464. online here.

News at the base of the Amniota, part 3: The amniotic egg

Earlier we looked at the base of the amniota and the phylogenetic miniaturization that preceded and succeeded basalmost amniotes. Today we’ll take a closer look at the one key trait that defines the Amniota.

Eggs and Embryonic Development
All morphology aside, the single key trait that defines the Amniota is the production of eggs surrounded by extraembryonic membranes and large enough to sustain the development of the developing embryo until it hatches beyond the gilled aquatic stage. Initially such an egg must have been small enough to maintain its shape and integrity out of water during the gradual evolution of those extraembryonic membranes (Carroll, 1969).

Phylogenetic bracketing shows the evolution of the amniotic egg had its genesis in the Viséan (~345 Ma), likely with a sister to Silvanerpeton and Gephyrostegus bohemicus, (the latter known from the Westphalian, 310 mya). Earlier and more derived amniotes are also found in Viséan strata. These include Westlothiana, Casineria and Eldeceeon (Fig. 1). So the origin of the amniotic egg precedes them all.

The anamniote outgroup taxa, Seymouria, Kotlassia and Utegenia (Fig. 1), all known from much later time periods (Permian), had juveniles with external gills (Laurin, 1996; Klembara et al., 2007), and so did not produce amniotic eggs. None of the recovered basal amniotes had juveniles with gills and sensory grooves. Carroll and Baird (1972) considered the small basal amniote Brouffia (Westphalian, Fig. 1) a juvenile. It had no external gills or sensory grooves. Klembara et al. (2014) considered Gephyrostegus watsoni (Fig. 1) a juvenile anamniote, but it, likewise, has no external gills or sensory grooves. Rather it nests between Eldeceeon and Solenodonsaurus in the Archosaurmorpha branch of the Amniota.

Figure 1. Basal amniotes to scale. Click to enlarge.

Figure 1. Basal amniotes to scale. Click to enlarge.

Basalmost amniotes share three skeletal traits
that indicate larger eggs were likely being produced:

  1. reduction to loss of the posterior dorsal ribs permitting expansion of the posterior torso in gravid females;
  2. greater depth of the pelvic opening permitting the passage of larger eggs; and
  3. unfused pelvic elements providing more pelvic flexibility during egg laying.

Amniotes more derived than G. bohemicus also develop a second sacral vertebra. Since these ‘second generation’ basal amniotes are generally much smaller overall with shorter limbs (Fig. 1), the second sacral rib comes as something of a surprise—unless it was used to help support the greater weight and mass of gravid females.

Certain amniote clades also transform their ossified ventral dermal scales to become elongate gastralia. Perhaps this also helped support the greater weight and width of the egg mass while gravid.

Only female basal amniotes?
Notably, no gender differences have been identified in basal amniote skeletons. Either basal male amniotes also lacked posterior dorsal ribs and had a deeper pelvic opening and/or basal amniotes reproduced by parthenogenesis (reproduction without males), as certain living lizards do (Lutes, et al., 2010). It could go either way.

Figure 1. Gephyrostegus watson (Westphalian, 310 mya) in situ and reconstructed. The egg shapes are near the hips as if recently laid.

Figure 2. Click to enlarge. Gephyrostegus watson (Westphalian, 310 mya) in situ and reconstructed. The egg shapes are near the hips as if recently laid. A few insects appear in the matrix. The carpals and tarsals are present, just displaced. So are the tail chevrons. The embryo (E) is hypothetical based on egg shape and size.

Westphalian amniote eggs?
In the basal amniote Gephyrostegus watsoni (Fig. 2, but this taxon needs a new name because it doesn’t nest with the holotype of Gephyrostegus) eight irregular flattened sphere shapes, each 5mm in diameter (five percent of the adult snout/vent length), appear dorsal to the open ‘lumbar’ area. If they were eggs they are the right size to pass through the pelvic opening. Preserved beyond the confines of the mother’s abdomen, the mother could have moved slightly just after depositing her eggs, shortly before burial. No embryonic skeletons should be expected to appear within such eggs. Instead embryos would have developed after egg deposition, as in many living reptiles. No calcified shell should be expected at this early stage of egg evolution. Examples of similar jelly-like soft tissue preservation in the fossil record are known, as in the Triassic lepidosaur, Cosesaurus (Fig. 4), preserved with a medusa (Ellenberger and de Villalta, 1974).

Click to enlarge and see rollover image. Here DGS, digital graphic segregation, enabled the identification of many more bones than firsthand observation, including the displaced carpals and tarsals, along with a few insects and egg-shapes.

Click to enlarge and see rollover image. Here DGS, digital graphic segregation, enabled the identification of many more bones than firsthand observation, including the displaced carpals and tarsals, along with a few insects and egg-shapes.

Hatchling size
From 1 cm diameter egg sizes (estimated from pelvic openings) curled up Gephyrostegus bohemicus hatchlings would have been ~2.6 cm in length or one-eighth (12 percent) the size of the mother (Fig. 1).

Figure 3. Click to enlarge and see the rollover. Eldeceeon with a strangely expanded belly (defined by gastralia/scales) that could have contained a load of eggs, traced in green here.

Figure 3. Click to enlarge and see the rollover. Eldeceeon with a strangely expanded belly (defined by gastralia/scales) that could have contained a load of eggs, traced in green here.

A gravid amniote in the Viséan?
The Eldeceeon holotype was preserved with an oddly expanded belly (Fig. 3). Perhaps this was also a gravid female (Fig. 7) with an egg load that pushed out her ossified ventral scales during postmortem decay and/or crushing. I’ve traced some possible eggs shapes found in the matrix.

Smaller ‘second generation’ basal amniotes, like Westlothiana and Casineria (Fig. 3), would have had proportionately smaller eggs.

Figure 4. Extant lizards, A. gravid, B. in the process of laying eggs, C. with egg clutch.

Figure 4. Extant lizards, A. gravid, B. in the process of laying eggs, C. with egg clutch.

Living examples of gravid females
Extant lizards (Fig. 4) show the extent of belly-stretching in gravid (pregnant) females and the relatively large size of their eggs. A clutch can be about the size of the mother’s eggless torso.

Basal amniote paleobiology
With short, sprawling fore limbs, a weak tail and a large head, Gephyrostegus watsoni (Fig. 2) was likely slow and secretive, like the living Sphenodon, both in leaf litter and in shallow puddles. This would apply even more so to massively burdened gravid females (Fig. 4). Without obvious defenses or weapons, the key to basal amniote success appears to have been an increase in the production of large eggs laid safely out of predator-filled swamps. The East Kirkton (Viséan) and Nyrany Basin (Westphalian) environments were swampy coal forests, so these would have provided the humid air, damp earth, wet leaf litter and abundant puddles needed for basal amniotes to slowly evolve keratinized skin and membrane enclosed eggs. The large orbit of basal amniotes suggests a nocturnal niche. Perhaps they hid and slept during daylight hours, avoiding evaporative sunlight and diurnal predators.

More later.

References
Carroll RL 1969. Problems of the origin of reptiles. Biological Reviews 44:393–431.
Carroll RL and D Baird 1972. Carboniferous stem-reptiles of the family Romeriidae. Bulletin of the Museum of Comparative Zoology 143:321–363.
Ellenberger P and JF de Villalta 1974. Sur la presence d’un ancêtre probable des oiseaux dans le Muschelkalk supérieure de Catalogne (Espagne). Note preliminaire. Acta Geologica Hispanica 9:162–168.
Klembara J, DS Berman, AC Henrici, A Cernansky, R Werneburg and T Martens. 2007. First description of skull of lower Permian Seymouria sanjuanensis (Seymouriamorpha: Seymouriidae) at an early juvenile growth stage. Annals of Carnegie Museum 76:53–72.
Laurin M 1996. A redescription of the cranial anatomy of Seymouria baylorensis, the best known Seymouriamorph (Vertebrata: Seymouriamorpha). PaleoBios 17: 1–16.
Lutes AA, WB Neaves, DP Baumann, W Wiegraebe and P Baumann 2010. Sister chromosome pairing maintains heterozygosity in parthenogenetic lizards. Nature 464:283–286.

News at the base of the Amniota, part 2: miniaturization

Yesterday we opened this topic (the origin of the Amniota) with an introduction to Gephyrostegus bohemicus at the base of this major clade.

Outgroup Taxa and Phylogenetic Miniaturization
Based on the present set of outgroup taxa (Fig. 1) basal tetrapods (represented by Ichthyostega) gave rise to embolomeres (represented by Proterogyrinus and Eoherpeton), which gave rise to seymouriamorphs (represented by Seymouria, Kotlassia, Utegenia and Silvanerpeton), which ultimately produced basal amniotes (represented by Gephyrostegus bohemicus) and ‘second generation’ amniotes (represented by Westlothiana and Thuringothyris).

Figure 2. Miniaturization led to the origin of the Amniota.

Figure 1. Miniaturization led to the origin of the Amniota.

A general reduction in overall size is apparent in this lineage.
Proterogyrinus
is more than a meter in length (Fig. 1). Eoherpeton is even larger. However, Seymouria and Kotlassia are down to 60 cm long with at least a 50 cm snout/vent length. The basal amniotes, G. bohemicus, Eldeceeon and Bruktererpeton, each have a snout-vent length of 25 cm or less. The ‘second generation’ amniotes, G. watsoni, Westlothiana, Casineria, Brouffia, Thuringothyris and Cephalerpeton, reduce that length to 13 cm or less. Thus, under the present hypothesis of phylogenetic relationships, the evolution of basal amniotes includes phylogenetic miniaturization (Hanken and Wake, 1993). This is convergent with the miniaturization already recognized in the evolution of basal mammals (e.g., Pachygenelus, Megazostrodon, Hadrocodium) from larger cynodonts (Luo, et al. 2001) and in basal birds (e.g., Sinosauropteryx, Archaeopteryx, Sinornis) from larger theropods (Lee, et al. 2014). Based on the few taxa that are known (Fig. 1), basal amniotes apparently remained small to tiny for the first 30 million years, until the advent of Solenodonsaurus and the arrival of pelycosaur-grade synapsids in the Late Carboniferous to Early Permian.

Figure 1. Basal amniotes to scale. Click to enlarge.

Figure 2. Basal amniotes to scale. Click to enlarge. Only Solenodonsaurus gets large early.

More later.

References
Hanken J and DB Wake 1993. Miniaturization of body size: organismal consequences and evolutionary significance. Annual Review of Ecology and Systematics 24:501–519.
Lee, MSY, A Cau, D Naish, and GJ Dyke 2014. Sustained miniaturization and anatomical innovation in the dinosaurian ancestors of birds. Science 345:562-566.
Luo Z-X, A.W. Crompton and A-L Sun 2001. A new mammaliaform from the Early Jurassic and evolution of mammalian characteristics. Science 292: 1535–1540.

News at the base of the Amniota part 1: Introduction

Over the next six or seven posts a new hypothesis on the origin of the Amniota will be presented. Get ready for several days of heresy.

If the following sounds like an abstract, that’s because it was one.
A large-scale phylogenetic analysis of basal amniotes is long overdue. Smaller, more focused studies typically followed tradition in creating their inclusion sets because an overarching study was not available to draw from. Too often this led to the recovery of dissimilar sister taxa by default. It is axiomatic that additional taxa test prior results by providing more nesting opportunities, so 389 specimen- and genus-based taxa are employed here. Several taxa formerly considered anamniotes; Gephyrostegus, Bruktererpeton and Eldeceeon, now nest as basalmost amniotes arising from the Seymouriamorpha. They confirm an earlier prediction that the first amniotes would have a small adult body size and contradict current analyses that nest large diadectomorphs as proximal sister taxa to the Amniota. The first amniote clade dichotomy produced an expanded Archosauromorpha (taxa closer to archosaurs, including Synapsida and Enaliosauria) and an expanded Lepidosauromorpha (taxa closer to lepidosaurs, including Caseasauria and Diadectomorpha). The present study sheds new light on the genesis and radiation of the Amniota. Phylogenetic miniaturization is present at the base of several clades, including the Amniota. The ancestry of all included taxa can now be traced back to Devonian tetrapods and every lineage documents a gradual accumulation of derived traits.

Figure 1. Cladogram of basal amniotes, a subset of the large reptile tree. Dots represent phylogenetic size reductions. Bootstrap scores are shown. Archosauromorpha in gray. Lepidosauromorpha in black at the bottom. Figure 1. Cladogram of basal amniotes, a subset of the large reptile tree. Dots represent phylogenetic size reductions. Bootstrap scores are shown. Archosauromorpha in gray. Lepidosauromorpha in black at the bottom.

Figure 1. Cladogram of basal amniotes, a subset of the large reptile tree. Dots represent phylogenetic size reductions. Bootstrap scores are shown. Archosauromorpha in gray. Lepidosauromorpha in black at the bottom.

So this is part of what has been keeping my busy this year…
I added several taxa (Fig. 1) to the large reptile tree (not updated yet) that nested at or near the base of the Amniota. Their inclusion shed new light on the basalmost amniotes and subtly changed the tree topology of the large reptile tree. Gephyrostegus bohemicus (Fig. 2) moved to the very base of the Amniota while lacking any traditional amniote traits.

Figure 1. A new reconstruction of Gephyrostegus bohemicus. This species lived 30 million years after the origin of the Amniota in the Visean, 340 mya. Note the lack of posterior dorsal ribs. This trait shared by all basalmost amniotes, may provide additional space for massive eggs in gravid females, but is also shared with males, if there were males back then.

Figure 1. A new reconstruction of Gephyrostegus bohemicus. This specimen lived in the Westphalian, some 30 million years after the origin of the Amniota in the Visean, 340 mya. Note the lack of posterior dorsal ribs and the presence of a deep pelvis. These traits shared by all basalmost amniotes, may provide additional space for larger eggs in gravid females, but is also shared with males, if there were males back then. Otherwise, this taxon has none of the traditional amniote traits found in current textbooks. Nevertheless, it nested as the last common ancestor of lepidosauromorphs and archosauromorphs, so by phylogenetic bracketing, it laid amniotic eggs.

Traditional amniote traits include:

  1. loss/fusion of the intertemporal
  2. absence of the otic notch
  3. loss/reduction of palatal fangs
  4. appearance/expansion of the transverse flange of the pterygoid
  5. loss of labyrinthine infolding of the marginal teeth
  6. reduction of the intercentra
  7. addition of a second sacral vertebra
  8. narrowing and elongation of the humeral shaft
  9. appearance of the astragalus from fused tarsal elements.

Ironically, many of the above traits are also found in microsaurs and seymouriamorphs, but not in basalmost amniotes. So there is homoplasy at play here.

Only phylogenetic analysis reveals the origin of the Amniota.
The key trait defining the Amniota is the production of amniotic eggs, a trait shared with all archosauromorphs (all taxa closer to archosaurs, including synapsids and mammals) and lepidosauromorphs (all taxa closer to lepidosaurs). Even though no amniotic eggs were found with the fossil Gephyrostegus bohemicus, phylogenetic bracketing (Fig. 1) indicates that G. bohemicus laid amniotic eggs. It nested as the more recent common ancestor of all lepidosauromorphs and all archosauromorphs (all other amniotes).

Outgroup taxon
Note that Silvanerpeton (Clack 1994, Fig. 2, Viséan, 331 mya) is the proximal anamniote outgroup taxon to the Amniota and lived 30 million years earlier than G. bohemicus.

Figure 2. Silvanerpeton from the Upper Viséan (331 mya) is the outgroup taxon for Gephyrostegus and the  Amniota.

Figure 2. Silvanerpeton from the Upper Viséan (331 mya) is the outgroup taxon for Gephyrostegus and the Amniota.

Traits that appear in the basal amniote, G. bohemicus, 
not present in Silvanerpeton:

  1. prefrontal separate from postfrontal
  2. premaxilla not transverse
  3. major axis of naris less than 30º above jawline
  4. naris lateral
  5. nasals and frontals subequal
  6. maxilla ventrally straight
  7. longest metatarsal is number four

Nothing very ‘sexy’ about this list. Traditional amniote traits appear later. Like Gephyrostegus bohemicusSilvanerpeton also lacks posterior dorsal ribs and has a deep pelvis. These traits may indicate that it was the most primitive known taxon to lay large amniotic eggs (in the Viséan), but Silvanerpeton doesn’t quite have the phylogenetic bracketing status that G. bohemicus enjoys. Even so, we’ll soon meet more Viséan taxa that were definite amniotic egg layers. yet were either not considered amniotes or paleontologists wondered about them without adequately testing them in phylogenetic analysis.

Traditional and conventional studies
indicate that diadectomorphs (Fig. 3) are the proximal outgroup taxa for the Amniota, despite the readily apparent differences. In the large reptile tree diadectomorphs nest deep within the Amniota, derived from millerettids.

Figure 3. Click to enlarge. Traditional phylogenies nest large diadectomorphs as amniote taxa. Here, however, small gephyrostegids share more traits with basal amniotes. A. Diadectes. B. Orobates. C. Tseajaia. D. Limnoscelis. In the box: E. Gephyrostegus bohemicus. F. Thuringothyris. G. Westlothiana.  H. Hylonomus.

Figure 3. Click to enlarge. Traditional phylogenies nest large diadectomorphs as amniote outgroup taxa. Here, however, small gephyrostegids share more traits with basal amniotes and are more similar in size. A. Diadectes. B. Orobates. C. Tseajaia. D. Limnoscelis. In the box, basal amniotes: E. Gephyrostegus bohemicus. F. Thuringothyris. G. Westlothiana. H. Hylonomus.

Recent phylogenetic analyses
(Gauthier et al., 1988; Laurin and Reisz, 1995, 1997, 1999; Lee and Spencer, 1997; Ruta, Coates and Quicke, 2003; Ruta, Jefferey and Coates, 2003; Laurin, 2004; Klembara et al., 2014) recovered large, lumbering Limnoscelis and Diadectes (Fig. 3) as proximal amniote outgroup taxa. However, Ruta, Coates and Quicke (2003:292) reported, “The morphological gap between diadectomorphs and primitive crown-amniotes is puzzling”. I think everyone can agree on that one. This puzzle was resolved when Ruta, Jefferey and Coates (2003) nested diadectomorphs and Solenodonsaurus within the Amniota with the addition of the synapsid, Ophiacodon, nesting as a basal taxon. Unfortunately, later workers, like the recent Gephyrostegus paper by Klembara et al. (2014) also nest diadectomorphs outside the Amniota. Taxon exclusion was the problem, like it always is.

More tomorrow…

References
Clack JA 1994. Silvanerpeton miripedes, a new anthracosauroid from the Visean of East Kirkton, West Lothian, Scotland. Transactions of the Royal Society of Edinburgh: Earth Sciences 84:369–76.
Gauthier, J A, G Kluge and T Rowe 1988. The early evolution of the Amniota; pp. 103–155 in M. J. Benton (ed.), The Phylogeny and Classification of the Tetrapods, Volume 1: Amphibians, Reptiles, Birds: Oxford: Clarendon Press.
Klembara J, J Clack, AR Milner and M Ruta 2014. Cranial anatomy, ontogeny, and relationships of the Late Carboniferous tetrapod Gephyrostegus bohemicus Jaekel, 1902. Journal of Vertebrate Paleontology 34:774–792.
Laurin M 2004. The evolution of body size, Cope’s rule and the origin of amniotes. Systematic Biologiy 53:594–622.
Laurin M and R R Reisz 1995. A reevaluation of early amniote phylogeny. Zoological Journal of the Linnean Society 113:165–223.
Laurin M and R R Reisz 1997. A new perspective on tetrapod phylogeny; pp. 9–59 in S. S. Sumida and K. L. M. Martin (eds.), Amniote Origins: Completing the Transition to Land, Elsevier.
Lee MSY and PS Spencer 1997. Crown-clades, key characters and taxonomic stability: When is an amniote not an amniote?; pp. 6–84 in S. S. Sumida and K. L. M. Martin (eds.), Amniote Origins: Completing the Transition to Land, Elsevier.
Ruta M, MI Coates and DLJ Quicke 2003. Early tetrapod relationships revisited. Biological Reviews 78:251–345.
Ruta M, JE Jefferey and MI Coates 2003. A supertree of early tetrapods. Proceedings of the Royal Society, London B 270:2507–2516.

The LH 20523 specimen of Scandensia is really Tijubina

Two lizards were described in 2011.
Bolet and Evans (2011) described what they thought was ‘new material’ of Scandensia (LH 20523), but it had a very long stiff tail and tiny rib osteoderms. This specimen is only known from the posterior half (Fig. 1). Simões (2011) redescribed the complete Tijubina, which also had a very long stiff tail and tiny rib osteoderms. Both are from the Early Cretaceous, the former from Spain, the latter from Brazil.

The large reptile tree nested the LH 20523 specimen with Tijubina, in the middle of the Tritosauria, several nodes away from Scandensia. The holotype of Scandensia nests between basal rhynchocelphalians and basal squamates + tritosaurs. It doesn’t have a long stiff tail or dorsal osteoderms. Distinct from the LH 20523 specimen, Scandensia has a lumbar region of very short ribs.

Figure 1. Tijubina and Scandensia holotypes. Scandensia is a much larger genus. The tail is not well preserved and could be longer in Scandensia. Note the lumbar area in Scandensia not present in Tijubina. Also note the great size of metatarsal 4 in Tijubina, not present in Scandensia.

Figure 1. Tijubina and Scandensia holotypes. Scandensia is a much larger genus. The tail is not well preserved and could be longer in Scandensia. Note the lumbar area in Scandensia not present in Tijubina. Also note the great size of metatarsal 4 in Tijubina, not present in Scandensia.

The LH 20523 specimen has a regenerated tail with cartilaginous growth. The authors estimate the tail was 3x the the snout vent length, which they note contrasts with the holotype of Scandensia, which has subequal tail and snout-vent lengths. This is the first clue that these two are not the same taxon. But then, they reasoned, the Scandensia tail may have been incompletely preserved or regenerating.

The LH 25023 specimen that Bolet and Evans (2011) referred to Scandensia, but nests here with Tijubina.

Figure 2 The LH 25023 specimen that Bolet and Evans (2011) referred to Scandensia, but nests here with Tijubina.

Bolet and Evans (2011) were surprised to see osteoderms around the rib cage because the holotype of Scandensia does not have these. This is the second clue.

The very robust fourth metatarsal is a trait shared with Tijubina, not with Scandensia, a third clue.

Figure 3. Ankles of the LH 25303 specimen. Here Bolet and Evans see a single astragalocalcaneum (in yellow on the drawing) but the photo does not  support a single proximal ankle bone.

Figure 3. Ankles of the LH 20523 specimen. Here Bolet and Evans see a single astragalocalcaneum (in yellow on the drawing, and present in all squamates) but the photo does not support a single proximal ankle bone. Rather a split appears between the astragalus and calcaneum, as in all tritosaurs.

Bolet and Evans report a single astragalocalcaneum, as in Scandensia, but the photo of the LH 20523 specimen shows a split between the proximal ankle bones and the shape is different than shown. Was this wishful thinking? or more precise observation. No tritiosaurs have a fused proximal tarsus, so this would be an autapomorphy if true.

Were Bolet and Evans aware of Tijubina?
I don’t think so. It is not mentioned in their paper. A query to both authors goes unanswered at present.

References
Bolet A and Evans SE 2011. New material on the enigmatic Scandensia, an Early Cretaceous lizard from the Iberian Peninsula. Special Papers in Palaeontology 86:99-108.
Bonfim Júnior DC and Marques RB 1997. Um novo lagarto do Cretáceo do Brazil (Lepidosauria, Squamata, Lacertilia – Formação Santana, Aptiano da Bacia do Araripe. Anuário do Instituto do Geociencias 20:233-240
Bonfim-Júnior F de C and Rocha-Barbosa O 2006. A Paleoautoecologia de Tijubina pontei Bonfim-Júnior & Marques, 1997 (Lepidosauria, Squamata Basal da Formação Santana, Aptiano da Bacia do Araripe, Cretáceo Inferior do Nordeste do Brasil). Anuário do Instituto de Geociências – UFRJ ISSN 0101-9759 Vol. 29 – 2 / 2006 p. 54-65.
Evans SE and Barbadillo LJ 1998. An unusual lizard (Reptilia: Squamata) from the Early Cretaceous of Las Hoyas, Spain. Zoological Journal of the Linnean Society 124:235-265.
Simões TR 2012. Redescription of Tijubina pontei, an early cretaceous lizard (Reptilia; Squamata) from the crato formation of Brazil. An Acad Bras Cienc. Feb 2, 2012. pii: S0001-37652012005000001. [Epub ahead of print].