The diet of Thylacoleo, the giant sugar glider

The diet of Thylacoleo, the so-called ‘marsupial lion,’
has been a puzzle for decades. The jaws and teeth look dangerous and carnivorous, but Thylacoleo nests in the middle of an herbivorous clade of wombat-like marsupials.

That’s the problem.
Morphology and phylogeny provide the problem… and the answer to the diet of Thylacoleo. This answer could have been known decades earlier, but alas… the same taxon exclusion issue that pervades paleo was also present here.

Morphology
One look at the palate of Thylacoleo documents a very different sort of mammal palate:

  1. The jawline curves laterally near the premolars
  2. Several molars seem to have fused to become one giant tooth
  3. There is an asymmetry in the lineup of the posterior teeth
Figure 1. The palate of Thylacoleo is unusual in several respects. See text for details.

Figure 1. The palate of Thylacoleo is unusual in several respects. See text for details. Vertical arrows point to asymmetries. Horizontal arrow lines up with parasagittal plane.

 

Phylogeny
In the large reptile tree (LRT, 1250 taxa) the closest living sisters to Thylacoleo, the sugar gliders, like Petaurus, should provide some sort of natural guidance as to what the giant sugar glider ate. And they do.

Sugar glider diet
From the Wikipedia page on sugar gliders: Sugar gliders are seasonally adaptive omnivores with a wide variety of foods in their diet… In summer they are primarily insectivorous, and in the winter when insects (and other arthropods) are scarce, they are mostly exudativorous (feeding on acacia gum, eucalyptus sap, manna, honeydew or lerp). Sugar gliders have an enlarged caecum to assist in digestion of complex carbohydrates obtained from gum and sap.

To obtain sap and nectar from plants, sugar gliders will strip the bark off trees or open bore holes with their teeth to access stored liquid gum. Little time is spent foraging for insects, as it is an energetically expensive process, and sugar gliders will wait until insects fly into their habitat, or stop to feed on flowers. They are opportunistic feeders and can be carnivorous, preying mostly on lizards and small birds. They eat many other foods when available, such as nectar, acacia seeds, bird eggs, pollen, fungi and native fruits. Pollen can make up a large portion of their diet, therefore sugar gliders are likely to be important pollinators of Banksia species.”

Well, there you have it. 
Little sugar gliders can be carnivorous. They can also strip bark off trees to get at the gum inside. That’s a rare diet. As sister taxa, giant sugar gliders, like Thylacoleo, were therefore likely also carnivorous and/or stripped bark off trees to get at the gum. For the latter odd reason the odd skull of Thylacoleo was likely adapted, and predation, if you insist, but predators don’t have the odd palate and teeth that Thylacoleo has.

We don’t have to provide a narrow dietary answer for Thylacoleo
because the diet of living sugar gliders is diverse. AND sugar gliders provide the long-sought carnivorous exception to this herbivorous clade.

Petaurus breviceps (Waterhouse 1839; Early Miocene to present; up to 30cm) is the extant sugar glider, a nocturnal squirrel-like marsupial able to climb trees and glide with furry membranes between the fore and hind limbs. An opposable toe is present on each hind foot. Sharp claws tip every digit.

Thylacoleo carnifex (Owen 1859; Pliocene-Pleistocene; 1.14 m long) was a giant sugar glider like Petaurus. Thylacoleo had the strongest bite of any mammal with the largest, sharpest molars of any mammal. It had fewer but larger teeth than Petaurus. The manus included retractable claws. The pes had a very large heel bone (calcaneum). This supposedly carnivorous ‘marsupial lion’ nests with herbivores. Pedal digit 1 likely had a phalanx and claw, but it has not been shown. Sugar gliders strip bark off of trees and the very odd teeth of Thylacoleo could have done the same on a larger scale.

References
Owen R 1859. On the fossil mammals of Australia. Part II. Description of a mutilated skull of the large marsupial carnivore (Thylacoleo carnifex Owen), from a calcareous conglomerate stratum, eighty miles S. W. of Melbourne, Victoria. Philosophical Transactions of the Royal Society 149, 309-322.
Waterhouse GR 1838. Observations on certain modifications observed in the dentition of the Flying Opossums (the genus Petaurus of authors). Proceedings of the Zoological Society of London. 4: 149–153.

wiki/Petaurus
wiki/Thylacoleo
NOVA | Bone Diggers | Anatomy of Thylacoleo | PBS
https://en.wikipedia.org/wiki/Sugar_glider
https://www.wired.com/2009/06/thylacoleo-herbivore-or-carnivore/

Advertisements

Tooth replacement just prior to the origin of mammals

Everyone in paleo knows
that reptiles with teeth replace their teeth regularly. Dinosaurs and lizards shed teeth and replace them with new ones. This is known as polyphyodonty.

Everyone in paleo also knows
that therian mammals replace their front teeth (including the premolars) only once and their posterior molars appear only once. This is known as diphyodonty.

What happened at the transition to mammals
is the subject of today’s blogpost.

Most toothed reptiles
are born or are hatched with teeth. By contrast, as everyone knows, mammal babies are born toothless and depend on their mother’s milk and care during the early weeks of life. Milk teeth appear first, often at weaning. Milk teeth are typically lost and replaced with greater maturity. More molars appear as the mandible (dentary) grows in size to adulthood. Other mammals, especially toothless mammals, evolve other tooth replacement strategies.

Figure 1. Sinoconodon growth series including jaws and teeth, here colorized from Zhang et al. 1992.

Figure 1. Sinoconodon growth series including jaws and teeth, here colorized from Zhang et al. 1998. The huge canine in IVPP 8047 is worth noting.

Figure 2. Sinoconodon skull(s) showing some variation in the way they were drawn originally.

Figure 2. Sinoconodon skull(s) showing some variation in the way they were drawn originally.

The pre-mammal, Sinoconodon,
(Fig.1) is transitional in that the incisors and canines are replaced ‘multiple times’ according to Zhang, Crompton, Luo and Schaff 1998. They found juvenile specimens in which premolars were replaced only once before being permanently lost in the oldest specimens.  (That’s an autapomorphic twist seen in some basal mammals, but not others). In Sinoconodon molars 1 and 2 were lost after one replacement. Molars 3–5 were were replaced once. Thus, there were no permanent teeth in this pre-mammal (as there are in the basal mammals Megazostrodon and Hadrocodium). Based on this data, the authors determined  that Sinoconodon lacked lactation and determinate growth.

The large reptile tree (LRT, 1245 taxa) agrees with the authors that Sinoconodon is close to ancestor of mammals. Therioherpeton (Fig. 3) and the clade of Spinolestes are closer.

Figure 4. Therioherpeton nests at the base of the Mammaliaformes with Brasilodon, between Yanaconodon and Sinoconodon, not far from Megazostrodon.

Figure 3. Therioherpeton nests between Pachygenelus and the tritylodontids, not far from Megazostrodon.

The take-away:
Phylogenetic miniaturization in the Late Triassic, including a shorter maturation and faster life cycle, with fewer tooth replacements along with lactation, were key to mammal survival—but only after the Cretaceous. A wide variety of tritylodonts, like Repenomamus, lived alongside mammals throughout the Mesozoic, but not beyond.

Figure 1. Basal mammals and their ancestors to scale. At 72 dpi the image is about actual size.

Figure 4. Basal mammals and their ancestors to scale. At 72 dpi the image is about actual size. The blue teeth in the Sinoconodon skull are not present in the skull, as I learned after reading the Zhang et al. paper. By comparison, you can that is odd and atypical. 

References
Zhang F, Crompton AW, Luo Z and Schaff CR 1998. Pattern of dental replacement of Sinoconodon and its implication for evolution of mammals. Vertebrata PalAsiatica 36(3):197–217.

wiki/Sinoconodon

Chaoyangodens: a transitional monotreme with big canines

Hou and Meng 2014
described a new Jehol eutriconodont mammal, Chaoyangodens lii, (Fig. 1) from the Yixian formation, Early Cretaceous. “The new species has a tooth formula I5-C1-P1-M3/i4-c1-p1-m4, unique among eutriconodonts in having only one premolar in lower and upper jaws, respectively, and a distinctive diastema between the canine and the premolar. Its simple incisors and reduced premolars show a mosaic combination of primitive and derived features.” In other words, this is a transitional taxon, as most are.

Later, Meng and Hou 2016
described ‘the earliest known mammalian stapes’ from the same specimen. “The stapes of Chaoyangodens is reduced in size compared to those of non-mammalian cynodonts and is within the size range of extant mammals.”

Figure 1. Chaoyangodens lii in situ and restored skull in lateral view. This taxon is a monotreme basal to both the echidna and platypus.

Figure 1. Chaoyangodens lii in situ and restored skull in lateral view. At a screen resolution of 72 dpi, this image is twice life size. This mouse-sized taxon is a monotreme basal to both the echidna and platypus.

Figure 2. Subset of the LRT focusing on monotremes and Chaoyangodens.

Figure 2. Subset of the LRT focusing on monotremes and Chaoyangodens.

Here in the large reptile tree (LRT, 1137 taxa, Fig. 2) Chaoyangodens nests between Kuehneotherium and Akidolestes, basal  to the living monotremes, Ornithorhynchus and Tachyglossus.

The top of the Chaoyangodens skull is buried in the matrix. The shape of the skull in lateral view, or at least parts of it, like the position of the orbit (Fig. 1), can be surmised by phylogenetic bracketing.

Based on the nesting of Chaoyangodens
and relatives, like Brasilitherium and Kuehneotherium (Late Triassic), these taxa are all crown mammals, not stem mammals (contra traditional thinking).

Luo, Kielan-Jaworowska and Cifelli (2002)
also nested eutriconodonts within crown mammals and this was confirmed by many later workers. The LRT nests many traditional triconodonts and eutriconodonts elsewhere, both more primitive and more derived.

Recently
we looked at the echidna sister/ancestor, Cifelliodon, here. It also had fewer and bigger teeth in the jaws, though none of those erupted beyond the gum line.

References
Hou S-L and Meng J 2014. A new eutriconodont mammal from the Early Cretaceous Jehol Biota of Liaoning, China. Chinese Science Bulletin 59, 546–553.
Luo Z-X, Kielan-Jaworowska  z and Cifelli RL 2002. In quest for a phylogeny of Mesozoic mammals. Acta Palaeontologica Polonica. 47 (1): 1–78.
Meng J and Hou S-L 2016. Earliest known mammalian stapes from an early Cretaceous eutriconodontan mammal and implications for evolution of mammalian middle ear. Palaeontologica Polonica 67:181–196.

wiki/Eutriconodonta

Mystery solved: Thylacoleo is a giant sugar glider…

no doubt, a little too big to glide…
and Thylacoleo (Fig. 2) is looking even less carnivorous in phylogenetic bracketing.

Sugar gliders
(Fig. 1) are phalangers (Fig. 6), a marsupial clade nesting between kangaroos and wombats (Fig. 5).

Figure 1. Petaurus breviceps skeleton in two views, plus a skull with mandible, lacking in the skeleton.

Figure 1. Sugar glider, Petaurus breviceps, skeleton in two views, plus a skull with mandible, lacking in the skeleton.

Adding the marsupial sugar glider,
Petaurus (Figs. 1, 3), and the cuscus, Phalanger (Fig. 6), to the large reptile tree (LRT, 1231 taxa) resolves a decades-old phylogenetic problem because Petaurus, the sugar glider, nests as a sister to Thylacoleo, the marsupial lion (Figs. 2, 4). Phalanger, the cuscus, nests as their last common ancestor, which has been suggested earlier.

According to the AustraliaMuseum website
“Most palaeontologists think that the ancestors of thylacoleonids were herbivores, an unusual occurrence since most carnivores evolved from other carnivorous lineages. One proposal suggests that thylacoleonids evolved from a possum ancestor (Phalangeroidea) based on dental formula, the skull of the cuscus Phalanger, and on a phalangerid-like musculature. Alternatively, evidence from certain skull features may show that thylacoleonids branched off the vombatiform line, the lineage that includes wombats and koalas.”

In the LRT,
wombats and koalas are now sister taxa to the cuscus clade. Without the sugar glider and the cuscus, the marsupial lion earlier nested with the wombat, Vombatus.

Just to be clear,
Phalanger is not an ancestor to Didelphis, the Virginia opossum, in the LRT, even though the Australian Museum called it a ‘possum ancestor.’

Figure 2. Thylacoleo skeleton compared to Petaurus skeleton to scale.

Figure 2. Thylacoleo skeleton compared to Petaurus skeleton to scale.

Long thought to be a super predator, 
in the midst of a clade of gentle wombat-like herbivores, Thylacoleo had, for its size, the strongest bite of any mammal, living or extinct, despite having tiny upper canines. This linking with sugar gliders further erodes the carnivorous hypothesis. 

Figure 3. Skulls of the genus Petaurus with many more teeth than in Thylacoleo, but in the same general pattern. Note the lower third premolar and its similarity to the same tooth in Thylacoleo.

Figure 3. Skulls of the genus Petaurus with many more teeth than in Thylacoleo, but in the same general pattern. Note the lower third premolar and its similarity to the same tooth in Thylacoleo. The big organe tooth at the tip of the dentary is the canine. The lower incisors are absent.

Arboreal or not?
Wikipedia reports, “The claws [of Thylacoleo] were well-suited to securing prey and for climbing trees.” And now we know how that came to be. Petaurus, despite its arboreal abilities, does not have a divergent thumb, like the one found in Thylacoleo.

Dentary canines
traditionally considered large, rodent-like incisors due to their placement, the anterior-most (medial-most) dentary teeth are actually canines. The incisors and their alveoli have disappeared. This can only be traced via phylogeny (see Arctocyon and Didelphis). The ancestrally small lower incisors are gone, replaced with ancestrally large large lower canines that meet medially like typical incisors. Notably, the lower canines maintain their traditional placement relationship to the upper canines (Fig. 6).

Even more interesting,
some marsupial taxa that experience a phylogenetic miniaturization, like Eurygenium (basal to Toxodon) the incisors reappear and the canines are not much larger than the incisors. That’s called a reversal or an atavism.

Figure 4. Thylacoleo skull. Many times larger than Petaurus, with fewer larger teeth, this is a giant sugar glider.

Figure 4. Thylacoleo skull. Many times larger than Petaurus, with fewer larger teeth, this is a giant sugar glider. The large orange tooth is the lower canine. The upper canine is a vestige. 

Size
Thylacoleo was 71 cm tall at the shoulder, about 114-150cm long from head to tail tip, about the size of a jaguar.

Petaurus is 40cm long to the tail tip, about the size of a ‘flying’ squirrel. Loose folds of skin spanning the fore and hind limbs to the wrists and ankles are used to extend glides from tree to tree, or up to 140m. The diet includes sweet fruits and vegetables.

The sugar glider in vivo.

Figure 5. The sugar glider, Petaurus, in vivo. Note the wrinkled fur between the fore and hind limb. That’s the gliding membrane.

Petaurus species
According to Wikipedia, “There are six species, sugar glidersquirrel glidermahogany glidernorthern glideryellow-bellied glider and Biak glider, and are native to Australia or New Guinea.” Whichever one is closest to Thylacoleo has not been tested or determined.

Figure 2. Thylacoleo skeleton compared to Petaurus skeleton to scale.

Figure 5. Subset of the LRT focusing on Marsupialia, Metatheria and then nesting of Thylacoleo.

Petaurus breviceps (Waterhouse 1839; Early Miocene to present; up to 30cm) is the extant sugar glider, a nocturnal squirrel-like marsupial able to climb trees and glide with furry membranes between the fore and hind limbs. An opposable toe is present on each hind foot. Sharp claws tip every digit.

Phalanger orientalis (Pallas 1766; 34 cm in length) is a nocturnal arboreal folivore marsupial known as thte Northern common cuscus. Commonly considered a ‘possum’ the cuscus nests between wombats and kangaroos, basal to sugar gliders and marsupial lions.

Figure 6. The cuscus (genus: Phalanger orientalis) nests with Petaurus and Thylacoleo in the LRT.

Figure 6. The cuscus (genus: Phalanger orientalis) nests with Petaurus and Thylacoleo in the LRT. Those anterior dentary teeth look like incisors, but phylogenetically are actually canines.

Thylacoleo carnifex (Owen 1859; Pliocene-Pleistocene; 1.14 m long) was a giant sugar glider like Petaurus. Thylacoleo had the strongest bite of any mammal with the largest, sharpest molars of any mammal. It had fewer but larger teeth than Petaurus. The manus included retractable claws. The pes had a very large heel bone (calcaneum). This supposedly carnivorous ‘marsupial lion’ nests with herbivores. Pedal digit 1 likely had a phalanx and claw, but it has not been shown.

References
Goldingay RL 1989. The behavioral ecology of the gliding marsupial, Petaurus australis. Research Online. University of Wollongong Thesis Collection. PDF
Owen R 1859. On the fossil mammals of Australia. Part II. Description of a mutilated skull of the large marsupial carnivore (Thylacoleo carnifex Owen), from a calcareous conglomerate stratum, eighty miles S. W. of Melbourne, Victoria. Philosophical Transactions of the Royal Society 149, 309-322. 
Waterhouse GR 1838. Observations on certain modifications observed in the dentition of the Flying Opossums (the genus Petaurus of authors). Proceedings of the Zoological Society of London. 4: 149–153.

wiki/Petaurus
wiki/Thylacoleo
https://australianmuseum.net.au/thylacoleo-carnifex

When turtles lost their teeth

When animals lose something,
be it a tail, finger, limbs, eyes or teeth, usually a vestige is left behind.

When turtles lost their ancestral teeth,
they should have left empty alveoli along their jaw rims. And the place to look for empty alveoli in turtles is in the most primitive turtle in the large reptile tree, the late-surviving Niolamia (Fig. 1), one of the great horned meiolaniid turtles.

Figure 1. Palate of the basal turtle Niolamia with arrows pointing to pinprick alveoli lacking teeth.

Figure 1. Palate of the basal turtle Niolamia with arrows pointing to pinprick alveoli lacking teeth.

Tiny pinpricks
along the maxilla (Fig. 1) seem to show where tiny teeth once erupted in Niolamia.

Earlier we looked at similar alveoli in the jaw tips of a gray whale where desmostylian tusks once emerged.

Flamingo teeth

Figure 1. The picture says it all. Like ducks and Pelagornis, pseudo teeth appear in flamingos. Here they are used for filtering. Compare these jaws to those of the right whale, Balaena.

Figure 1. The picture says it all. Like ducks and Pelagornis, pseudo teeth appear in flamingos. Here they are used for filtering. Compare these jaws to those of the right whale, Balaena.

No, they’re not real teeth,
But they act like baleen to filter out tiny brine shrimp and blue-green algae. According to Wikipedia, “Their bills are specially adapted to separate mud and silt from the food they eat, and are uniquely used upside-down. The filtering of food items is assisted by hairy structures called lamellae which line the mandibles, and the large rough-surfaced tongue.”

Figure 2. Phoenicopterus, the flamingo, sometimes enjoys the beach.

Duck teeth
(Fig. 3) are not real teeth either.

Figure 3. Anas, the mallard duck, shares more trait with Aepyornis than with other taxa in the LRT.

Figure 3. Anas, the mallard duck, shares more trait with Aepyornis than with other taxa in the LRT.

Pelagornis teeth
(Fig. 4) are not real teeth either. But, brother they look ral.

Figure 1. Pelagornis skeletal elements.

Figure 4. Pelagornis skeletal elements.

Hesperornis teeth|
(Fig. 5) are real teeth.

Figure 2. Hesperornis skull. Compare this to that of Pelagornis in figure 1.

Figure 5. Hesperornis skull. Compare this to that of Pelagornis in figure 1.

A new look at Jidapterus (basal azhdarchid pterosaur)

Wu, Zhou and Andres 2017
bring us long anticipated details on Jidapterus (Early Cretaceous, Dong, Sun and Wu 2003) which was previously presented as a small in situ photograph lacking details. Even so a reconstruction could be made (Fig. 1). Coeval larger tracks (Elgin and Frey 2011) have been matched to that reconstruction.

Figure 2. Jidapterus matched to the Gansu, Early Cretaceous pterosaur tracks. The trackmaker was one-third larger than the Jidapterus skeleton.

Figure 1. Jidapterus matched to the Gansu, Early Cretaceous pterosaur tracks. The trackmaker was one-third larger than the Jidapterus skeleton.

Of interest today
is the fact that Jidapterus was originally and, so far, universally considered toothless. Its specific name, J. edentatus, refers to that condition. Wu, Zhou and Andres 2017 produced tracings (Figs. 2, 3) of the rostrum that are also toothless. However, they are crude and appear to miss the premaxilla and maxilla sutures, the palatal elements… and maybe some teeth. Those jaw rims are not slippery smooth like those of Pteranodon. Outgroups in the large pterosaur tree (LPT), all have tiny teeth.

Figure 2. Rostrum of Jidapterus (RCPS-030366CY) and traced according to Wu et al. and colorized using DGS to reveal skull sutures and possible teeth.

Figure 2. Rostrum of Jidapterus (RCPS-030366CY) and traced according to Wu et al. and colorized using DGS to reveal skull sutures and possible teeth. See figure 3 for details. What Wu, Zhou and Andres label the  “low ridge of rostrum” is here identified as the rostral margin above the palatal portion. 

The cladogram of Wu, Zhou and Andres
lacks dozens of key taxa found in the LPT that separate azhdarchids from convergent tapejarids and shenzhoupterids. In the LPT giant azhdarchids arise from tiny toothy azhdarchids once considered Pterodactylus specimens… and these, in turn are derived from tiny and mid-sized dorygnathids in the Middle Jurassic.

What Wu, Zhou and Andres label the  “low ridge of rostrum”
is here identified as the rostral margin rim at the edge of the palate.

Figure 3. Focus on the rostral tip of Jidapterus shown in figure 2. Are these teeth?

Figure 3. Focus on the rostral tip of Jidapterus shown in figure 2. Are these teeth? You decide. I present the data. 

As in all pterosaurs
each premaxilla of Jidapterus has four teeth according to this data.

Are these tiny teeth?
Or are they tiny occlusions and/or chisel marks. Let’s get even better closeups to figure this out. Phylogenetic bracketing indicates either tiny teeth or edentulous jaws could be present here.

References
Dong Z, Sun Y and Wu S 2003. On a new pterosaur from the Lower Cretaceous of Chaoyang Basin, Western Liaoning, China. Global Geology 22(1): 1-7.
Elgin and Frey 2011. A new azhdarchoid pterosaur from the Cenomian (Late Cretaceous) of Lebanon. Swiss Journal of Geoscience. DOI 10.1007/s00015-011-0081-1
Wu W-H, Zhou C-F and Andres B 2017. The toothless pterosaur Jidapterus edentus (Pterodactyloidea: Azhdarchoidea) from the Early Cretaceous Jehol Biota and its paleoecological implications. PLoS ONE 12(9): e0185486.

wiki/Jidapterus