Mistralazhdarcho: a new pterosaur, but not an azhdarchid

Vullo et al. 2018 bring us a new small ‘azhdarchid’
known from a few 3D bones. In the large pterosaur tree (LPT, 236 taxa) Mistralazhdarcho nests with tiny Nemicolopterus and mid-sized Shenzhoupterus (Fig. 1). Mistralazhdarcho is more than twice as tall as Shenzhoupterus with similar gracile cervicals, a longer radius and shorter metacarpus. Distinct from Shenzhoupterus, the mandible is gracile, more like that of Nemicolopterus.

Figure 1. Mistralazhdarcho compared to reconstructions of Shenzhoupterus and Nemicolopterus.

Figure 1. Mistralazhdarcho compared to reconstructions of Shenzhoupterus and Nemicolopterus. A longer antebrachium is found in Mistalazdarcho.

A downturned dentary
is a trait found in this clade of pterosaurs, and to a lesser extent in sister sinopterids.

The small prominence at the ‘bend’ of the mandible
in Mistralazhdarcho is a curious trait not visible in Shenzhoupterus due to closed jaws in situ. Nemicolopterus might preserve that trait, but a humerus is under the mandible exactly at that point, making it difficult to determine in photos.

A warped deltopectoral crest,
like the one found in Mistalazdarcho (Fig. 1), is not found in azhdarchids. And look at the size range in this clade!

Having reconstructions for direct comparisons,
and a large cladogram that is regularly adding new taxa are tools the LPT and www.ReptileEvolution.com offer freely online to paleontologists worldwide. Best to test here rather than trust your hunch elsewhere.

References
Vullo R, Garcia G, Godefroit P, Cincotta A, and Valentin X 2018. Mistralazhdarcho maggii, gen. et sp. nov., a new azhdarchid pterosaur from the Upper Cretaceous of southeastern France. Journal of Vertebrate Paleontology. DOI: 10.1080/02724634.2018.1502670.

Advertisements

Juvenile Rhamphorhynchus and flightless pterosaur abstracts

Part 4
The following manuscripts are independently published online without peer-review at the DavidPetersStudio.com website. http://www.davidpetersstudio.com/papers.htm

Better to put them out there this way
than to let these works remain suppressed. Hope this helps clarify issues.


Peters D 2018g. First flightless pterosaur
PDF of manuscript and figures

Pterosaur fossils have been discovered all over the world, but so far no flightless pterosaurs have been reported. Here an old and rarely studied pterosaur fossil (Sos 2428) in the collection of the Jura Museum in Eichstätt, Germany, was re-examined and found to have a reduced pectoral girdle, small proximal wing elements (humerus, radius and ulna), three vestigial distal wing elements, the relatively longest pelvis of any pterosaur and the widest gastralia, or belly ribs. This discovery represents a unique morphology for pterosaurs. The Jura specimen lacked the wing size, forelimb muscularity and aerodynamic balance necessary to sustain flapping flight. It was a likely herbivore.


Peters D 2018h. First juvenile Rhamphorhynchus recovered by phylogenetic analysis
PDF of manuscript and figures
Standing seven to 44 centimeters in height, a growing list of 120+ specimens assigned to the pterosaur genus Rhamphorhynchus are known chiefly from the Solnhofen Limestone (Late Jurassic, southern Germany). An early study recognized five species and only one juvenile. A later study recognized only one species and more than 100 immature specimens. Phylogenetic analyses were not employed in either study. Workers have avoided adding small Solnhofen pterosaurs to phylogenetic analyses concerned that these morphologically distinct specimens were juveniles that would confound results. Here a large phylogenetic analysis that includes tiny Solnhofen pterosaurs tests that concern and seeks an understanding of relationships and ontogeny within the Pterosauria with a focus on Rhamphorhynchus. 195 pterosaurs were compiled with 185 traits in phylogenetic analysis. Campylognathoides + Nesodactylus were recovered as the proximal outgroups to the 25 Rhamphorhynchus specimens. The ten smallest of these nested at the clade base demonstrating phylogenetic miniaturization. Two Rhamphorhynchus had identical phylogenetic scores, the mid-sized NHMW 1998z0077/0001, and the much larger, BMNH 37002. These scores document a juvenile/adult relationship and demonstrate isometry during pterosaur ontogeny, as in the azhdarchid, Zhejiangopterus, and other pterosaurs. Rather than confounding results, tiny Solnhofen pterosaurs illuminate relationships. All descended from larger long-tailed forms and nested as transitional taxa at the bases of the four clades that produced all of the larger Late Jurassic and Cretaceous pterodactyloids. No long-tailed pterosaurs survived into the Cretaceous, so miniaturization was the key to pterosaur survival beyond the Jurassic.

These manuscripts benefit from
ongoing studies at the large reptile tree (LRT, 1256 taxa) in which taxon exclusion possibilities are minimized and all included taxa can trace their ancestry back to Devonian tetrapods.

Largest birds and pterosaurs to scale (finally!)

Question: Could the largest azhdarchids fly?
Tradition says: Yes! Most pterosaur workers say: Yes! Flying azhdarchid models say: Yes!

Heresy:
We looked at that question earlier and came to another conclusion based on comparable vestigial wingtip phalanges in flightless pterosaurs. Today there’s more to consider.

Let’s take another look at that same problem,
this time comparing the largest flying bird to the largest flying pterosaurs, and the largest non-flying bird to a giant pterosaur (Fig. 1). Since the largest flying birds and pterosaurs had the longest wing/neck and wing/torso ratios, the reduction of wing span/neck length points toward flightlessness—if analogous.

As reported yesterday,
lacking the ability to fly removes the constraints for multiple increases in size. We know of no pterosaurs that had vestigial wings, only vestigial distal wing phalanges. Three of the four flightless pterosaurs we looked at earlier were pterodactyloid-grade quadrupeds, so their free fingers had to contact the substrate. Moreover, all flightless pterosaurs could still flap vigorously, whether to ward off threats by display and/or increase thrust while fleeing.

Figure 1. Click to enlarge. The largest flying and non-flying birds and pterosaurs to scale.

Figure 1. Click to enlarge. The largest flying and non-flying birds and pterosaurs to scale. Are large soaring birds analogs to large flying pterosaurs. If so, then are large non-flying birds analogs to large non-flying pterosaurs. Does giving up flight enable giantism in birds and pterosaurs?

While recognizing obvious differences
between the largest pterosaurs and birds, which are more alike?

On the one hand
we have pterosaurs and birds with shorter necks, shorter legs and longer wings.

On the other hand
we have a pterosaur and a bird with a longer neck, longer legs and a relatively shorter wing (compared to those of volant pterosaurs). Is it really as simple as that?

Or did I cherry-pick taxa?

Figure 2. Azhdarchids are stork-like waders, so Ciconia, the stork, is a good analog. It is notably smaller than the smallest known Quetzalcoatlus.

Figure 2. Azhdarchids are stork-like waders, so Ciconia, the stork, is a good analog. It is notably smaller than the smallest known Quetzalcoatlus, about the size of flying azhdarchids.

Azhdarchids are often compared to storks.
And they do have similar proportions (Fig. 2). But all storks fly and some of the largest (e.g. Ciconia) are only half as tall as the smallest Quetzalcoatlus sp. We know of no giant storks. Even so, at half as tall, the legs of Ciconia were equal in length to the larger Q. sp, the torso was similar in size, and the neck and skull were only half as long. All this would appear to make azhdarchids top heavy relative to the volant stork (Fig. 3), despite a longer wing span, even with reduced distal elements.

Figure 3. Q. northropi and Q. sp. compared to Ciconia, the stork, and Pelagornis, the extinct gannet, to scale. That long neck and large skull of Quetzalcoatlus would appear to make it top heavy relative to the volant stork, despite the longer wingspan. Pteranodon and other flying pterosaurs do not have such a large skull at the end of such a long neck (Fig. 1). The longer wings of pelagornis show what is typical for a giant volant tetrapod, and Q. sp. comes up short in comparison.

Figure 3. Q. northropi and Q. sp. compared to Ciconia, the stork, and Pelagornis, the extinct albatross/gannet, to scale. That long neck and large skull of Quetzalcoatlus would appear to make it top heavy relative to the volant stork and gannet, despite the longer wingspan compared to the stork. Pteranodon and other flying pterosaurs do not have such a large skull at the end of such a long neck (Fig. 1). The longer wings of Pelagornis show what is typical for a giant volant wide-ranging tetrapod, and Q. sp. comes up short in comparison.

What about those wings?
Compared to the stork, Q sp. had longer wings. Compared to albatrosses and pterosaurs, Q. sp. had shorter wings. In any case, that long neck is strikingly different in azhdarchids. Such a long lever arm had to affect the center of balance (Fig 3 red line).

Figure 3. Quetzalcoatlus model ornithopter by Paul Macready getting walked to its take-off point.

Figure 4. Quetzalcoatlus model ornithopter by Paul Macready getting walked to its take-off point. The wing chord extends to the posterior pelvis, which is invalid. The demonstrated wing chord is shown in figure 3.

What about that mechanical flying Q. sp?
Paul Macready built and flew a gliding Q. sp., (Fig. 4) not a Q. northropi. It did not have a long enough neck or large enough skull. As it was, it was well-engineered and all the mechanics in the torso were unlikely duplicated in the Late Cretaceous taxon.

Figure 5. The Macready flying model compared to Q. sp. Perhaps it has always been overlooked that the neck proportions were changed and heavy mechanical motors and batteries filled the torso.

Figure 5. The Macready flying model compared to Q. sp. Perhaps it has always been overlooked that the neck proportions were changed and heavy mechanical motors and batteries filled the torso. The hind limbs are unnaturally tucked in in the model, following Kevin Padian’s invalidated view that pterosaurs were close to dinosaurs.

The question(s) comes down to:
If large soaring birds are analogs to large flying pterosaurs, then are the largest non-flying birds analogs to the largest pterosaurs? Does giving up flight enable and promote gigantism in birds AND pterosaurs?

At present, the evidence says: yes.

However, it’s not that giant pterosaurs were “too big to fly”.
Here’s the working hypothesis: Smaller pterosaurs that stopped flying were then able to grow much bigger, with less constraint for maintaining a center of balance at the shoulders.

Quetzalcoatlus running like a lizard prior to takeoff.

Figure  6. Quetzalcoatlus running like a lizard prior to takeoff. Leaning forward while running fast is what humans do to. Perhaps the neck was held more erect, like an ostrich or giraffe, back in the Late Cretaceous.

Not sure why it took so long
to put large pterosaurs and birds together. This should have been posted years ago.

 

Time to trash the widely embraced ‘Azhdarchoidea’

According to Wikipedia
Unwin (2003) defined the group Azhdarchoidea as the most recent common ancestor of Quetzalcoatlus and Tapejara, and all descendants.

Unfortunately
Unwin’s phylogenetic analysis excluded several dozen relevant taxa. When those are added back in, as shown in the large pterosaur tree (LPT, 232 taxa), azhdarchids arise from certain phylogenetically miniaturized Dorygnathus clade specimens (TM 10341) while tapejarids arise from certain phylogenetically miniaturized germanodactylids (Nemicolopterus) and before that, phylogenetically miniaturized scaphognathids (Ornithocephalus brevirostris, BSPG 1971 I 17). Tapejarids and azhdarchids don’t have a common ancestor in the LPT until you go back to Sordes PIN 2585-25. And that was not the intent of Unwin 2003.

Competing hypotheses of relationships
by Naish and Martill 2006; Lu et al. 2008; Pinheiro et al. 2011; and Andres, Clark and Xu 2014 all suffer from the same cherry-picking and taxon exclusion issues. At least Vidovic and Martill 2014 added germanodactylids and dsungaripterids nesting basal to tapejarids, but failed to add dorygnathids and pre-azhdarchids among other relevant taxa basal to azhdarchids. By the way, you heard it here first: germanodactylids and dsungaripterids were ancestral to tapejarids. Thanks are due to Vidovic and Martill for confirming this.

Pterosaur workers are ‘missing the boat’
when they are content to cherry pick traditional genus-based taxa. If they were to employ more specimen-based taxa in an unbiased fashion, as the LPT does, they, too, would recover a wealth of interrelationships otherwise invisible to them.

The clade name Azhdarchia
is hereby defined as TM 10341, Beipiaopterus, their last common ancestor and all descendants. These include Huanhepterus, Ardeadactylus, CM 11426, BSPG 1911 I 31, the flightless azhdarchid JME-Sos 2428, JME Sos 2179, and the traditional azhdarchids, Jidapterus, Chaoyangopterus, Zhejiangopterus, Azhdarcho, Quetzalcoatlus and kin. With origins in the late middle Jurassic, and no matter what size, these are all stork-like waders, gradually getting phylogenetically larger, toothless and ultimately flightless as their distal wing phalanges become vestiges.

The Azhdarchidae.

Figure 1. The Azhdarchidae. Click to enlarge. (That’s a juvenile Zhejiangopterus shown). These are all waders.

We already have a suitable name for the clade Tapejaridae,
which developed elaborate head crests and never stopped flying (so far as is known), based on their elongate distal wing phalanges.

The new skull compared to other tapejarids. Click to enlarge.

Figure 2. Click to enlarge. The rising size of the tapejaridae. These are not waders.

The expansion of the antorbital fenestra above the level of the orbit
in tapejarids and azhdarchids is (I hate to be the only one saying the obvious) a convergent trait. LPT relationships were introduced and published in Peters 2007, and (with a few modifications to incomplete taxa) hold true today. Peters 2007 reported, Major clades typically have a spectral series of tiny pterosaurs at their base suggesting that paedomorphosis was a major factor in pterosaur evolution.” Since then, no other workers have included the vital and relevant tiny pterosaurs in their phylogenetic analyses.

It is also time to trash the clade ‘Pterodactyloidea’
When tiny pterosaurs are added to a phylogenetic analysis (click here) the traditional clade ‘Pterodactyloidea’ divides into two clades that arise from tiny Dorygnathus derived taxa (Fig. 1) and two more that arise from tiny Scaphognathus derived taxa (Fig. 3), for a total of four pterodactyloid-grade taxa. There’s one more semi-pterodactyloid clade,  Darwinopterus and kin, with a large skull and long neck, but also a long tail. And yet another, the anurognathids that do not have a large skull (exception: Dimorphodon) and long neck. However anurognathids do shrink the tail, a pterodactyloid-grade trait that Longrich, Martill and Andres 2018 used to nest anurognathids as the proximal outgroup to their clade ‘Pterodactyloidea’ with the mistakenly reconstructed Kryptodrakon (= Sericiterus) at the base. The LPT lumps and splits all pterosaurs in a logical and tenable fashion.

Figure 1. Scaphognathians to scale. Click to enlarge.

Figure 3. Scaphognathians to scale. Click to enlarge.

From one generation to another
If you were a full professor, would you venture to include taxa suggested by an amateur? So far, none have shown the courage to do so (see below), while outside of pterosaur studies, confirmation of discoveries first announced here has happened several times (e.g. Chilesaurus), without citation. So methods used here work.

Dr. S. Christopher Bennett once told me:
“If you submit that manuscript, it will not get published. And if you somehow get it published it will not get cited.” Uncanny how that prophecy came true… but it doesn’t reflect on the value of the manuscript.

And that’s why
this blog and the website ReptileEvolution.com were launched, outraged at the insanity and insular thinking out there.

PS. As I write this,
Bestwick, Unwin, Butler, Henderson and Purnell (2018) compiled statistics on pterosaur dietary preferences (over 300 pterosaur dietary statements identified from 126 published studies) employing a traditional cladogram with the tiny hand, four-toed crocodylomorph, Scleromochlus as the outgroup, anurognathids basal to eudimorphodontids, wukongopterids basal to ‘pterodactyloids’, cycnorhamphids nesting with ctenochasmatids, pteranodontids nesting with ornithocheirids, and tapejarids nesting with azhdarchids, with loss of resolution at half the nodes. It’s quite disheartening to see this, when we know better… through specimen-based taxon inclusion.

Pity the first author, poor PhD student (U of Leicester) Jordan Bestwick. He is under the tutelage of Dr. David Unwin. You might remember Leicester, was earlier seeking a pterosaur tracker, a student who could somehow find evidence for the invalidated pterosaur forelimb launch hypothesis. Evidently, this is how they operate: Don’t find out for yourself… rather your job is to continue the legacy and dictates of your professor(s).

In addition to the invalid Azhdarchoidea,
Dr. Unwin has promoted:

  1. the invalid ‘uropatagium‘ incorporating pedal digit 5 in basal pterosaurs
  2. the invalid deep chord wing membrane of pterosaurs
  3. the invalid quadrupedal basal pterosaur hypothesis
  4. the invalid pterosaur egg burial hypothesis
  5. the invalid quad-launch hypothesis of pterosaur takeoff
  6. the invalid archosauromorph (Scleromochlus) origin of pterosaurs (see above)
  7. the invalid modular evolution hypothesis to support
  8. the invalid nesting of the Darwinopterus clade basal to
  9. the invalid Pterodactyloidea.

Anyone can test these hypotheses by
adding taxa to current published studies using whatever characters one chooses. Really. That’s all it takes to upset these cherry-picked (taxon exclusion riddled) studies.

References
Andres B, Clark J and Xu X 2014. The Earliest Pterodactyloid and the Origin of the Group. Current Biology24: 1011–6.
Bestwick J, Unwin DM, Butler RJ, Henderson DM and Purnell MA 2018. Pterosaur dietary hypotheses: a review of idea and approaches. Biological Reviews online pdf
Longrich NR, Martill DM and Andres B 2018. Late Maastrichtian pterosaurs from North Africa and mass extinction of Pterosauria at the Cretaceous-Paleogene boundary. PLoS Biology, 16(3): e2001663.
Lü J, Unwin DM, Xu L and Zhang X 2008. A new azhdarchoid pterosaur from the Lower Cretaceous of China and its implications for pterosaur phylogeny and evolution. Naturwissenschaften. 95 (9): 891–897.
Pinheiro FL et al. (4 co-authors) 2011. New information on Tupandactylus imperator, with comments on the relationships of Tapejaridae (Pterosauria). Acta Palaeontologica Polonica. 56 (3): 567–580.
Peters D 2007. The origin and radiation of the Pterosauria. Flugsaurier. The Wellnhofer Pterosaur Meeting, Munich 27.
Unwin DM 2003. On the phylogeny and evolutionary history of pterosaurs. Pp. 139-190. in Buffetaut, E. & Mazin, J.-M., (eds.) (2003). Evolution and Palaeobiology of Pterosaurs. Geological Society of London, Special Publications 217, London, 1-347.

wiki/Azhdarchoidea
wiki/Pterodactyloidea

 

Azhdarcho restored (from bits and pieces)

Earlier
we looked at the neck and skull of Azhdarcho… Today we’ll put all the bits and pieces we know (from several individuals, unfortunately) to see what we get, following the Q. sp. bauplan (Fig. 1).

Figure 1. Azhdarcho to scale with more complete smaller Quetzalcoatlus specimen and in proportion to the bauplan of Q. sp. Note the robust femur and gracile humerus. These together with the small sternal complex and short distal wing elements indicate a flightless condition.

Figure 1. Azhdarcho to scale with more complete smaller Quetzalcoatlus specimen and in proportion to the bauplan of Q. sp. Note the robust femur and gracile humerus. These together with the small sternal complex and short distal wing elements indicate a flightless condition.

Azhdarcho lancicollis (Nesov 1984, Averianov 2010) is the namesake for the clade Azhdarchidae. This species is known from several individuals of various sizes and very few complete bones. That is why reconstructions of this genus are rare. This reconstruction is based on the more complete Q. sp., but about half as tall.

Given these limitations,
(no complete long bones), the femur appears to be more robust than in other azhdarchids, while the humerus is more gracile. Only in Huanhepterus is the femur so relatively short. The sternal complex is quite small, but with a deep cristospine, distinct from other azhdarchids. (Perhaps the rest of the sternal complex is missing.) Manual 4.4 was identified by Averianov, but it appears to be the distal portion of m4.3. The scale bars for the distal femur appear to be in error, or apply to a much larger individual (see Fig. 1).

The invisible aid in this reconstruction
is the observation that in nearly all post-Huanhepterus azhdarchids, the metacarpus, manual digit 4 and tibia are similar in length (Fig. 1), no matter how small or tall… probably to facilitate terrestrial locomotion.

Unfortunately,
not enough is known of Azhdarcho to add it to the LRT. So much has to be imagined.

References
Averianov AO 2010. The osteology of Azhdarcho lancicollis Nessov, 1984 (Pterosauria, Azhdarchidae) from the Late Cretaceous of Uzbekistan. Proceedings of the Zoological Institute of the Russian Academy of Sciences, 314(3): 246-317.
Nesov LA 1984. Upper Cretaceous pterosaurs and birds from Central Asia. Archived 17 March 2012 at the Wayback Machine. Paleontologicheskii Zhurnal, 1984(1), 47-57.

wiki/Azhdarcho

Battle of the giant Quetzalcoatlus sculptures

Bigger is better
especially when it comes to pterosaurs in museum exhibits. To wit: The Field Museum (Chicago, IL, USA) is installing a flying Quetzalcoatlus (Fig. 3) and a standing Quetzalcoatlus (largely imagined and restored, based on an almost complete wing bone, Fig. 1).

The artist/professors in Southern England
have one as well (Fig. 1). And full scale Q. northropi sculptures can be found worldwide! (See links and images at the end of this post.)

Figure 1. Field Museum Quetzalcoatlus (tan) vs. English Quetzalcoatlus (gray) vs. a tracing of the real Q. sp. and Q. northropi scant remains.

Figure 1. Field Museum Quetzalcoatlus (tan) vs. English Quetzalcoatlus (gray) vs. a tracing of the real Q. sp. and Q. northropi scant remains. Yes, the skull on the Field Musuem model is too long, evidently following the invalid archosaur hypothesis of origin. Pterosaurs, like other tritosaurs, do not change their proportions during growth as fossils demonstrate.

These models arrive on the heels
of a recent post on flightless giant pterosaurs. The Field Museum model (Fig. 1) appears to have a more precisely modeled skull, though about 50% too long (but really, without a skull, who knows?). Perhaps the skull was elongated (based on the smaller ?species) based on the invalid archosaur hypothesis of pterosaur origins. We know from the evidence of fossils that hatchlings and juvenile pterosaurs had adult proportions, not longer skulls.

Both models suffer
from putting too much weight on the tiny free fingers. The feet should be beneath the shoulder joint, as in birds, to take the weight off the tiny hyperextended fingers, acting more like ski poles, not providing thrust, only some sort of support.

The folded wing membrane should tend to disappear
(Fig. 2), but it shows in both models. The wing finger should flex closer to the elbow, but it doesn’t (probably to let the wing membrane show). The wing membrane chord should be shorter, to the elbow, but in both models the brachiopatagium blends with the leg, always awkwardly and in defiance of the data preserved in all pterosaur fossils (Fig. 2) that preserve soft tissue.

Here's how the wing membrane in pterosaurs virtually disappeared when folded.

Figure 2. Here’s how the wing membrane in pterosaurs virtually disappeared when folded. This is a tiny pre-azhdarchid, CM 11426.

Over at the Carnegie Museum (Pittsburgh, PA, USA)
they have a tiny pre-azhdarchid, CM 11426 (Fig. 2), with real wing membranes, as described above, matching those of other pterosaur soft tissues.

Figure 3. Field museum flying Quetzalcoatlus model has the invalid deep chord wing that attaches to the tibia.

Figure 3. Field museum flying Quetzalcoatlus model has the traditional but invalid deep chord wing that attaches to the tibia and makes this sort of pterosaur untenably awkward.

Figure 2. Quetzalcoatlus recreated as a digital model by Henderson 2010 compared to a bone reconstruction. No wonder the results were odd. The math was wrong.

Figure 4. Quetzalcoatlus recreated as a digital model by Henderson 2010 compared to a bone reconstruction. This is a possible slightly deeper wing chord. Compare this one to figure 5, which is more typical. And look at those hind limbs, like those of Sharovipteryx, forming a horizontal stabilizer, just like a typical airplane. And it matches the evidence (Fig. 2).

Not sure why pterosaur paleontologists
keep insisting that evidence (Fig. 2) can and should be ignored. It’s disheartening to see this and leaves them open to criticism.

Quetzalcoatlus running like a lizard prior to takeoff.

Figure 5. Quetzalcoatlus running like a lizard prior to takeoff. Click to animate. Giant azhdarchids gave up flying by reducing the lenth of their wings, following the patterns of other flightless pterosaurs. There is no awkwardness with this narrow chord wing design, which follows fossils like CM 11426 (Fig. 2).

Other online Quetzalcoatlus models/sculptures:

Low Poly Quetzalcoatlus model

https://www.alamy.com/stock-photo-muenchehagen-germany-10th-apr-2017-a-sculpture-of-the-quetzalcoatlus-138149396.html

https://blog.everythingdinosaur.co.uk/blog/_archives/2014/07/07/collecta-quetzalcoatlus-with-prey-model.html

If some of these seem to defy the ability to fly based on
a too far aft center of lift and a too far forward center of balance, or too small of a wing for such a large mass, no worries mate! If the imagination can soar, then so can these giants (NOT!) In the above YouTube video, the invalid, but traditional batwing shape of the brachiopatagium is best seen in the pterosaur’s shadow.

Quetzalcoatlus northropi

Tierra de dinos - Quetzalcoatlus Northropi

IF the wing membranes seem encumbering
awkward, liable to trip up the pterosaur or catch on some low lying shrub, no worried, mate! As these pterosaurs once wandered, let your imagination wander. There’s no need to precisely follow the evidence (Fig. 2) that shows the wing membranes essentially disappearing while flexed/folded.

Quetzalcoatlus at the Toledo Zoo

It’s going to be difficult to raise the wings for flight
given some of these awkward quadrupedal poses. Much better to have the center of balance over the toes at all static times (see below), shifting the balance forward while running at full speed (Fig. 5), like birds.

http://www.iaapa.org/DigitalShowDaily/2016/wed/Billings.asp

https://hiveminer.com/Tags/quetzalcoatlus

Why is this Houston Museum Quetzalcoatlus posed like this? Very strange.

Why is this Houston Museum Quetzalcoatlus posed like this? Very strange.

Quetzalcoatlus neck poses. Dipping, watching and displaying.

Quetzalcoatlus neck poses from David Peters Studio. Dipping, watching and displaying. Yes, the third finger is wrong here. It should be pointing posteriorly.

With what we know about pterosaurs
this should be a golden age of restoration. Instead, these models will someday be seen for what they are… near misses. They replace elegance with awkwardness, facts with fancy, and precision with tradition.

References
https://blog.everythingdinosaur.co.uk/blog/_archives/2018/06/01/pterosaur-models-go-on-display.html

Peters D 2002. A New Model for the Evolution of the Pterosaur Wing – with a twist 
Historical Biology 15: 277-301

Help fix ‘Dracula’ the giant Romanian pterosaur

This comes from a press release with photos,
not an academic paper. Evidently there is a new giant azhdarchid pterosaur named Dracula, known from ‘a majority of bones’, from which the following museum mount was created (Fig. 1).

Figure 1. Dracula the giant azhdarchid pterosaur museum mount. Hopefully it's not too late to fix the problems here.

Figure 1. Dracula the giant azhdarchid pterosaur museum mount. Hopefully it’s not too late to fix the problems here. Most will just take some twisting, some disassembly and reassembly.

Here are the visible problems:

  1. The ridged sternal complex looks like it was created from gastralia. No other sternal complex has such ridges and those from azhdarchids are not big and square.
  2. Fingers 1–3 are located laterally. They should be medially.
  3. The pteroid should anchor on the radiale (not the ulnare), the pre-axial carpal on the medial side of the distal carpal. And the pteroid should always point back to the deltopectoral crest.
  4. In azhdarchids m4.4 is always tiny,
  5. This looks like a dinosaur pterygoid.
  6. Pedal digit 5 should be on the lateral side of the foot.
  7. Twist metacarpal 4 90º laterally so the wing finger extends posterior to the forelimb.

Translated from German:
“In Denkendorf you can now marvel at a bone of “Dracula”, several dozen other bone fragments of the animal are located in Florida, where they are scientifically studied with elaborate technology. A publication on the sensation finding, the researchers have announced for the fall. Until then, “Dracula” remains only the unofficial name of the pterodactyl.”

Maybe it is all based on just the one cervical and some shards. We’ll find out later.

Some links below,
courtesy of Ben Creisler on the Dinosaur Mailing List.

http://www.donaukurier.de/nachrichten/panorama/Denkendorf-DKmobil-Dracula-in-Denkendorf;art154670,3721531

https://www.n-tv.de/wissen/Museum-stellt-Riesensaurier-Dracula-aus-article20350242.html