Enigmatic Apterodon enters the LRT basal to Andrewsarchus, tenrecs and odontocetes

Taxon exclusion problems have followed this genus
for over 100 years. In the large reptile tree (LRT, 1972+ taxa; subset Fig. 4) Apterodon (Fig. 1) nests with the IVPP V 12385 specimen assigned tentatively to Hapalodectes hetangensis (Fig. 2). Apterodon is much larger and the orbit is further forward. It is best known from two 20cm skulls (AMNH 13236 and 13237) and a mandible (AMNH 13241, Fig. 3) from Oligocene deposits in the Fayum Depression of Egypt where small to giant archaeocete whales are found. The related tiny anagalid, Ptolemaia (Fig. 4), is also found there.

Figure 1. Apterodon macrognathus (skull) matched to another species mandible.

According to Wikipedia
“Apterodon is an extinct genus of hyaenodontid mammal that lived from the mid Eocene through the Oligocene epoch.”

Perhaps they were following Szalay 1967, who reported, “As is shown in the above presentation and discussion, the undoubted hyaenodontid affinity of Apterodon is confirmed.”

Figure 2. These two Hapalodectes taxa do not nest together in the LRT. The 12385 specimen nests with Apterodon.

Szalay and all prior workers were wrong, according to the LRT.
Taxon exclusion is the issue here (again). Anagale and anagalids are not mentioned in prior studies. Hyaenodontids are creodont marsupials in the LRT.

Figure 3. Apterodon skull and mandible material. The AMNH 13237 small skull (lateral view) is the same one shown in figure 1 as a diagram.

Szalay 1967 wrote,
“The mere fact that the preglenoid process of Apterodon is large and well developed (point 3) is a feature shared with mesonychids. Instead of viewing one fact out of context, however, we can examine the structures that are in close morphogenetic dependence on one another-in
this case the entire zygomatic portion of the squamosal and its relation to the posterior part of the cranium.”

Ironically,
Szalay 1967 was the first worker to warn others not to “Pull a Larry Martin” when he said, “Instead of viewing one fact out of context”. Then he went ahead and pulled his own Larry Martin when he continued, “however, we can examine… the entire zygomatic portion of the squamosal and its relation to the posterior part of the cranium.”

Don’t list traits. Run your analysis. Let the software do the work. Find a last common ancestor for your clade of interest. Then list traits, noting instances of convergence. Granted, no one in 1967 had this option.

Figure 4. Subset of the LRT focusing on Anagalida and Apterodon.

Van Valen 1966 wrote:
“The relationships of Apterodon are questionable.” He mentions that several workers considered Apterodon a mesonychid, then lists several hyaenodontid traits found in Apterodon that are not known in mesonychids, then reverses himself with other traits.

Van Valen 1966 also wrote,
“Ptolemaia has a number of similarities to the Mongolian genus Anagale, of which the most important follow.” In the LRT (Fig. 4) Ptolemaia (also from the Fayum Depressions) is another sister to Apterodon, but Van Valen never made the connection.

According to Wikipedia
“With the exception of the type species, A. gaudryi, all species of Apterodon are known from Africa. Uniquely among hyaenodontids, it was a semiaquatic, fossorial mammal. It possessed strong forelimbs that were well equipped for digging, compared to those of modern badgers, while the tail, torso and hindlimbs show adaptations similar to those of other aquatic mammals like otters and pinnipeds. The dentition was suited to feed on hard-shelled invertebrate prey, such as crustaceans and shellfish. It probably lived along African coastlines.”

Previous workers did not include anagaloids in their analysis.
Omitting taxa leads to confusion. The LRT leads to discovery by minimizing taxon exclusion. Other workers minimize discovery by omitting taxa. Don’t follow those who are academically forced to do the bidding of their professorial masters. Don’t follow those who borrow cladograms or create supertrees. Create your own cladogram. Then you’ll have this powerful tool for the rest of your professional career.

Further complicating matters,
the traditional membership of the clade Anagaloidea is polyphyletic in the LRT. The traditional membership includes unrelated rabbits. Here in the LRT (Fig. 4) the clade Anagalida include Anagale and its relatives, including tenrecs, certain elephant shrews, Sinonyx, Andrewsarchus, odontocetes and their kin.

Apterodon macrognathus
(Fischer 1880; Eocene to Oligocene; Fig. 1) was considered a member of the Hyaeodontida, a clade within Creodonta, a clade within Marsupialia in the LRT. Here Apterodon nests with the IVPP V 12385 specimen (Fig. 2) assigned tentatively to Hapalodectes hetangensis (above) within the Anagaloidea. Apterodon is much larger, The orbit is further forward. The teeth extend behind the orbit. What looks like a carnassial is the anterior of four molars. The small, transverse premaxilla has two robust teeth. The mandible (= dentary) has no retroarticular process in one species, a straight process in another. Most specimens are from Egypt. The type genus is from Germany.

This appears to be a novel hypothesis of interrelationships.
If not, please provide a citation for the earlier hypothesis so I can promote it here.

wiki/Apterodon
wiki/Anagaloidea

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.