From Tapanila et al. 2020: Edestus, a scissors ‘shark’, enters the LRT

Among the oddest fish in the late Paleozoic seas,
are relatives of Helicoprion, famous for its buzz saw teeth (Fig. 3) that grew in a single spiral set in the mid-line of the jaws. Unfortunately not enough is known of the skull to attempt a nesting in the large reptile tree (LRT, 1812+ taxa) at present.

Figure x. Shark skull evolution diagram.

Earlier
Harpagofututor (Figs. 2, 3), a Carboniferous relative of today’s moray eel (Gymnothorax), was tentatively allied with the buzz-saw clade because it shared a small medial tooth row.

Today
Edestus heinrichi (Leidy 1856; Fig. 1; FMNH PF2204; 25cm skull length; Pennsylvanian) joins this clade with its scissors-like medial jaws (Fig. 1) and enough skull to work with.

Figure 1. Skull of Edestes from Tapanila et al. 2018 and reconstructed here using DGS methods.
Figure 1. Skull of Edestus from Tapanila et al. 2018 and reconstructed here using DGS methods.

From the Tapanila et al. 2020 abstract
“Sharks of Late Paleozoic oceans evolved unique dentitions for catching and eating soft bodied prey. A diverse but poorly preserved clade, edestoids are noted for developing biting teeth at the midline of their jaws. Helicoprion has a continuously growing root to accommodate >100 crowns that spiraled on top of one another to form a symphyseal whorl supported and laterally braced within the lower jaw. Reconstruction of jaw mechanics shows that individual serrated crowns grasped, sliced, and pulled prey items into the esophagus.”

Figure 2. Harpagofututor skull colored and reconstructed here. Compare to Gymnothorax in figure 4.
Figure 2. Harpagofututor skull colored and reconstructed here. Compare to Edestus in figure 1

From the abstract, continued.
“A new description and interpretation of Edestus provides insight into the anatomy and functional morphology of another specialized edestoid. Edestus has opposing curved blades of teeth that are segmented and shed with growth of the animal. Set on a long jaw the lower blade closes with a posterior motion, effectively slicing prey across multiple opposing serrated crowns.

Figure 5. Harpagofututor male and female skulls. Added here is the best partial skull of the buzz tooth shark, Helicoprion.
Figure 3. Harpagofututor male and female skulls. Added here is the best partial skull of the buzz tooth shark, Helicoprion.

Tradtionally
Edestus and Helicoprion are portrayed with a shark-like body, but phylogenetic bracketing gives it a moray eel-type body (Fig. 5), like Harpagofututor.

Figure 4. From Tapanila et al. 2020, animated here to show the biting cycle of Edestes.
Figure 4. From Tapanila et al. 2020, animated here to show the biting cycle of Edestus.

From the abstract, continued:
“The symphyseal dentition in edestoids is associated with a rigid jaw suspension and may have arisen in response to an increase in pelagic cephalopod prey during the Late Paleozoic.”

Note that Gymnothorax, the extant moray eel (Fig. 6), also has large palatal teeth along the symphysis (= midline) by homology.

Figure 1. Harpagofututor female from Lund 1982.
Figure 5. Harpagofututor female from Lund 1982.
Figure 2. The skull of the moray eel, Gymnothorax, in 3 views. Colors added as homologs to tetrapod skull bones. The nares exit is above the eyes.
Figure 6. The skull of the moray eel, Gymnothorax, in 3 views. Colors added as homologs to tetrapod skull bones. The nares exit is above the eyes.

Pulling prey deeper into the jaws
is a trait shared with the moray eel (Gymnothorax, Fig. 6), though done with an extra set of esophageal jaws (Fig. 7), distinct from the buzz-saw and scissors sharks.

Figure 7. GIF animation showing the dual bite of the dual jaws in moray eels. Both are derived from gill bars.
Figure 7. GIF animation showing the dual bite of the dual jaws in moray eels. Both are derived from gill bars.

Special thanks to reader JeholornisPrima
who sent a link to the Tapanila et al. 2020 paper on Edestus this morning to get this ball rolling.


References
Leidy J 1856. Indications of five species, with two new genera, of extinct fishes. Proc Acad Nat Sci Philadelphia 7:414.
Tapanila L, Priuitt J, Wilga CD and Pradel A 2020. Saws, Scissors, and Sharks: Late Paleozoic Experimentation with Symphyseal Dentition. The Anatomical Record 303:363–376. https://doi.org/10.1002/ar.24046

wiki/Edestus

2 thoughts on “From Tapanila et al. 2020: Edestus, a scissors ‘shark’, enters the LRT

  1. Glad to have helped! Certainly interesting (and unexpected) to see Edestus nesting with Harpagofutator. Still, that’s the whole point of the LRT.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.