Sallen 2016 presents a fascinating flawed look at fish tails

Sallen 2016 reports,
“The symmetrical, flexible teleost fish ‘tail’ has been a prime example of recapitulation — evolutionary change(phylogeny) mirrored in development (ontogeny).”

Sallan’s cladogram (Fig. 1) lays out the traditional cladogram of fish. Note the position of the bichir (Polypterus), at a basal node and the sturgeon + paddlefish (Acipcenser + Polyodon) near the middle.

Figure 1. Cladogram from Sallan 2016 (above) and young fish tails (below).

Figure 1. Cladogram from Sallan 2016 (above) and young fish tails (below).

Unfortunately,
taxon exclusion mars the cladogram of Sallan 2016 according to the the large reptile tree (LRT, 1704+ taxa; Figs. 2, 5). Due to tradition Sallan has chosen the wrong outgroup. Jawless sturgeons and shark-like paddlefish should be the outgroups here, not lungfish-like bichirs (Polypterus), which are highly derived taxa close to lungfish and tetrapods.

Figure 2. Same taxa as above, but rearranged to fit the LRT tree topology.

Figure 2. Same taxa as above, but rearranged to fit the LRT tree topology. Remember, sturgeons, paddlefish and sharks are basal taxa in the LRT. Esox is a catfish related to placoderms.

Salan reports,
“Paleozoic ray-finned fishes (Actinopterygii), relatives of teleosts, exhibited ancestral scale-coveredtails curved over their caudal fins. For over 150 years, this arrangement was thought to be retained in teleost larva and overgrown, mirroring an ancestral transformation series. New ontogenetic data for the 350-million-year-old teleost relative Aetheretmon overturns this long-held hypothesis.”

By contrast,
in the LRT Aetheretmon nests with Pteronsculus (Figs. 5–7)) far from the base of all bony fish, much closer to lobefin fish and tetrapods.

The Sallan point is still made:
Many fish tails do have two parts, especially when hatchlings.

Unfortunately, Sallan does not understand
the topology of the family tree of fish due to taxon exclusion. This is something the LRT minimizes by testing a wider gamut of taxa. As readers know, we see this same taxon exclusion problem all the time in paleontology.

Figure 2. Muskie (Esox) tail ontogeny from Sallan 2016 (middle row). Top row and photo added here.

Figure 3. Muskie (Esox) tail ontogeny from Sallan 2016 (middle row). Top row (to scale) and photo (below) added here. You might remember, Esox is a derived catfish without barbels.

Salan writes,
These two tails appear at a shared developmental stage in Aetheretmon, (Fig. 4) teleosts and all living actinopterygians. Ontogeny does not recapitulate phylogeny; instead, differential outgrowth determines final morphology.”

That appears to be so, but it still needs a valid tree topology.

Figure 3. Fish tail ontogeny in extinct Aetheretmon and extant Monotrete. Note the upper and lower lobes.

Figure 4. Fish tail ontogeny in extinct Aetheretmon and extant Monotrete. Note the upper and lower lobes. In the LRT these two fish are not closely related. Aetheretmon is basal to lobefins. Monotrete is a puffer fish.

Salan speculates:
“The double tail likely reflects the ancestral state for bony fishes.”

No, the ancestral state for bony fish is the heterocercal tail documented by sturgeons and whale sharks, and this goes back to armored osteostracans according to the LRT (Fig. 5).

Figure x. Subset of the LRT, focusing on fish for July 2020.

Figure x. Subset of the LRT, focusing on fish for July 2020.

Salan speculates,
“Many tetrapods and non-teleost actinopterygians have undergone body elongation through tail outgrowth extension, by mechanisms likely shared with distal limbs.”

Not sure what those ‘mechanisms’ would be, but basal tetrapods and stem tetrapods in the LRT have relatively short, straight tails and elongated bodies with great distances between the fore and hind limbs. Look at Panderichthys.

Figure 5. Aetheretmon is known from the oldest complete growth series for vertebrates.

Figure 6. Aetheretmon is known from the oldest complete growth series for vertebrates.

Figure 6. Pteronisculus, a sister to Aetheretmon in the LRT.

Figure 7. Pteronisculus, a Triassic sister to Early Carboniferous Aetheretmon in the LRT and it is easy to see why.

Sallan is ‘Pulling a Larry Martin’
by putting too much emphasis on one trait without testing all the traits on many more taxa. Only after a valid phylogenetic context is established can one begin to figure out if trait A came before trait B or not.

Sallan goes into great detail describing
the successive stages of growth in Aetheretmon, but this is problematic because the cladogram is invalid. “First things first” is a motto all paleontologists should ascribe to. First get the phylogeny correct. Fish workers are relying on an invalid family tree. The LRT is here to fix that.

Its worth remembering,
many fish on the other branch of bony fish (perch, anglers, etc., Fig. 5, orange right column) bring the pelvic fins beneath the pectoral fins, shortening the gut cavity and elongating the tail to extremes in some cases (oarfish). This is all distinct from the longer torso, shorter tail trend in the stem tetrapod branch of bony fishes (Fig. 5, yellow left column).


References
Sallan 2016. Fish ‘tails’ result from outgrowth and reduction of two separate ancestral
tails. Current Biology 26, R1205–R1225.
White EI 1927. The fish fauna of the Cementstones of Foulden, Berwickshire. Transactions of the Royal Society Edinburgh 55:255–287.

https://www.the-scientist.com/the-nutshell/a-tale-of-two-tails-32394

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.