In memoriam: Professor Jennifer Clack

If you never met her,
here’s your second chance, via YouTube videos.

This week marks the passing of Professor Jennifer Clack (1947-2020),
a renown specialist in Devonian tetrapods, especially Acanthostega (Fig. 1). In the above 4-minute YouTube video from 2017, Clack introduces her concept that the first tetrapods, like her discovery of Acanthostega, had more than five manual digits. This is confirmed by Middle Devonian tetrapod tracks (Fig. 3) with more than five digits.

Figure 4. Acanthostega does not have much of a neck.

Figure 1. Acanthostega does not have much of a neck. Note the narrow torso, taller than wide, distinct from lobefin fish that phylogenetically led to basal tetrapods, like Trypanognathus in figure 4.

But not
according to the large reptile tree (LRT) which recovers Acanthostega as a terminal taxon, not a transitional one, far from the main line of tetrapod origins. Four digits are found in Panderichthys, Greererpeton and many other basal tetrapods, as we learned earlier here, here and here. More than five digits are found in only a few derived taxa, including the stem reptile, Tulerpeton, far from the origin of digits.

A more complete and technical account
of basal tetrapod traits is provided by Clack in this 20-minute YouTube lecture video from 2016 (above).

It may be that Clack only saw evolutionary progress
without considering the possibility of evolutionary reversal, as happens when taxa return to a more aquatic niche from a less aquatic niche, reducing the importance of their digits and limbs. In the above video, Clack does not provide a phylogenetic analysis, like the LRT (subset Fig. 2) that includes more primitive, but late-surviving basal tetrapods, all of which follow the pattern of a wider than deep torso, as in ancestral fish with embedded arm bones in their lobefins. Rather, she concentrates on individual traits, which while valuable, set her up for ‘Pulling a Larry Martin‘, rather than concentrating efforts on determining a phylogeny that minimizes taxon exclusion and lets the software determine (= mirror) evolutionary events, as the LRT does while minimizing taxon inclusion bias.

Figure 4a. Subset of the LRT focusing on basal tetrapods. Note the displaced positions of Acanthostega and Ichthyostega.

Figure 2. Subset of the LRT focusing on basal tetrapods. Note the displaced positions of Acanthostega and Ichthyostega.

Only after a phylogeny is documented and validated
can one then discuss the various traits and their uses by the creature that possessed them.

Lest we forget
the first tetrapod tracks (Fig. 1, Niedźwiedzki et al. 2010) predate fossil tetrapods, including Acanthostega, by 20 to 30 million years, as we looked at here. And even they had more than five toes. Thus the phylogenetic origin of tetrapods goes back even further. The early Devonian must have provided quite a few niches for such rapid evolution to take place.

Figure 3. Best Devonian Valentia track with various overlays.

Figure 3. Best Devonian Valentia track with various overlays.

We need to look more closely at
Trypanognathus (Fig. 4; latest Carboniferous), which is the most primitive, but by far not the earliest, taxon in the LRT to document fingers and limbs, rather than lobe fins. Note the anterior eyes, wide flat skull and body, and primitive sprawling limbs. Can someone count the fingers and toes on this specimen? I find no more than four digits. Some may be hiding here.

Figure 1. Trypanognathus in situ, colorized to bring out ribs and limbs.

Figure 4. Trypanognathus in situ, colorized to bring out ribs and limbs is the most primitive, but not the earliest taxon with limbs and toes, not lobe fins.

We’ve seen the chronology of several fossil finds
at odds with their phylogeny in the LRT (e.g. multituberculates, bats, Gregorius). That keeps it interesting, but only a wide gamut phylogenetic analysis based on traits will deliver a valid tree topology. As time goes by and more discoveries are made the competing hypotheses will someday converge.

Figure 2. Silvanerpeton from the Upper Viséan (331 mya) is the outgroup taxon for Gephyrostegus and the Amniota.

Figure 5. Silvanerpeton from the Upper Viséan (331 mya) is the outgroup taxon for Gephyrostegus and the Amniota.

And one more thing,
Clack 1994 described Silvanerpeton (Fig. 5, Viséan, 335 mya) first as an anthrcosauroid and later (Ruta and Clack 2006) as a stem tetrapod, all without recovering it as the basalmost reptile, as shown in the LRT. Adding taxa, creating a wider gamut phylogenetic analysis, would have brought even more fame to this well-respected paleontologist.


References
Clack JA 1994. Silvanerpeton miripedes, a new anthracosauroid from the Visean of East Kirkton, West Lothian, Scotland. Transactions of the Royal Society of Edinburgh: Earth Sciences 84 (for 1993), 369–76.
Niedźwiedzki G, Szrek P, Narkiewicz K, Narkiewicz M and Ahlberg PE 2010. Tetrapod trackways from the early Middle Devonian period of Poland Nature 463, 43-48. doi:10.1038/nature08623
Ruta M and Clack, JA 2006 A review of Silvanerpeton miripedes, a stem amniote from the Lower Carboniferous of East Kirkton, West Lothian, Scotland. Transactions of the Royal Society of Edinburgh: Earth Sciences, 97, 31-63.

https://www.zoo.cam.ac.uk/news/professor-jenny-clack-frs-1947-2020

http://www.theclacks.org.uk/jac/Biography.html

https://www.pbs.org/wgbh/nova/link/clack.html
(make sure to click on the parts 2-4 links therein)

 

7 thoughts on “In memoriam: Professor Jennifer Clack

  1. Did it occur to you, at any point, not to use someone’s death and an excuse to highlight your blogs criticising her work?

    • Neil, I appreciate your sentiments, but ‘feelings’ have no place in science. Professor Clack did great things, but missed out on greater accolades by not expanding her taxon set. That’s the bottom line here.

      • Replies to this post that focused on ‘personal feelings’ rather than ‘presented evidence,’ were trashed in accord with long-standing policies here. If you want to talk about Acanthostega, feel free to repost.

  2. It’s unfair to fault Jenny for not including Trypanognathus in her phylogenetic analyses. Her last and best, in the redescription of Acherontiscus, was accepted for publication on 1 April 2019; the description of Trypanognathus was only published on 11 April 2019.

    (Besides, both from the paper and from your figure above, Trypanognathus doesn’t look particularly rootward for a tetrapod. It immediately reminds me, and the describers, of Trimerorhachis and Neldasaurus. Keep in mind that the endochondral bones of dvinosaurs ossified very slowly.)

    Replies to this post that focused on ‘personal feelings’

    Your post ascribes a long list of personal feelings to Jenny, and implies they strongly influenced her research. Why do you even engage in psychological speculation like that?

    • David, thank you for the information on acceptance and publication dates for Trypanognathus. To that point, contra traditional cladograms, the LRT lists 15 taxa between Panderichthys and Acanthostega. Trypanognathus is only one of them. To your second point, the LRT found relatively few changes between Trypanognathus and Pandericthys. That seems to be the shortest path from fins to fingers. Finally, my neutral feelings for Dr. Clack, other than the same admiration expressed by all her colleagues, did not strongly influence her research, I guarantee you. Bizarre comment.

      • Sorry for the misunderstanding. I mean that you implied she had all sorts of personal feelings, like a desire for “accolades”, and that those influenced her work.

        To that point, contra traditional cladograms, the LRT lists 15 taxa between Panderichthys and Acanthostega.

        That is indeed a matter of taxon sampling – as of right now I’m finding nine between them, and that includes one that has never been included in a phylogenetic analysis at all.

        the LRT found relatively few changes between Trypanognathus and Pandericthys

        I’d be interested in which ones those are. Maybe you just haven’t sampled the characters that change states there? That happens to me a lot.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.