A Jurassic squid choking hazard for Rhamphorhynchus

Hoffmann et al. 2020 reported in no uncertain terms,
“Pterosaurs ate soft-bodied cephalopods (Coleoidea).”

Immediately after, Hoffmann et al. dialed it back a bit,
when they wrote, “Here, we report the first evidence of a failed predation attempt
by a pterosaur on a soft-bodied coleoid cephalopod.”

Based on size alone,
the squid (PIMUZ 37358) was more than a mouthful according to this ‘to scale’ diagram (Fig. 1)…at least more than a stomachful.

Ask yourself:
could a Rhamphorhynchus of that size (none were larger) eat a squid of that size? Did the pterosaur fail at predation? Or did it change its mind after biting the squid out of curiosity or boredom and losing a tooth in the process?

Figure 1. Plesioteuthis squid in situ with tooth. Reconstructions of Plesioteuthis (above) and the n81 specimen attributed to the largest known Rhamphorhynhcus, which has a matching tooth. The question is: could that pterosaur eat that squid? Or did it change its mind after biting the squid?

Figure 1. Plesioteuthis squid in situ with tooth. Reconstructions of Plesioteuthis (above) and the n81 specimen attributed to the largest known Rhamphorhynhcus, which has a matching tooth. The question is: could that pterosaur eat that squid? Or did it change its mind after biting the squid? At the very top is the hard tissue gladius of the squid to scale. That’s a hard part that would have been especially hard to swallow.

You be the judge.
Hoffmann et al. 2020 have provided the pertinent information. Above are the predator and “prey” to scale. Other Rhamphorhynchus specimens are smaller, and the tooth could have fallen from a different alveolus (a larger tooth) on a smaller specimen. Lots of variables and unknowns here. Also consider the difficulty of swallowing that long gladius, a hard part homologous with the cuttle bone in a cuttlefish.

In any case,
watch what headline you put on your paper. Here the authors went for maximum impact. If, like these authors, you have to dial it back in the second sentence of your abstract,  maybe a more conservative headline should reflect that assessment. After all, a dietary mainstay is indeed different than a curious nibble… and relative size matters.

We looked at other pterosaur choking hazards
earlier here. Pterosaurs likely swallowed their prey whole. There is no indication that they tore squids apart, creating bite-sized pieces. Likewise there is no indication that pterosaurs were able to expand their stomach to accommodate oversize prey (Fig. 1).


References
Hoffman R, Bestwick J, Berndt G, Berndt R, Fuchs D and Klug C 2020. Pterosaurs ate soft-bodied cephalopods. http://www.nature.com/scientificreports (2020) 10:1230 | https://doi.org/10.1038/s41598-020-57731-2

2 thoughts on “A Jurassic squid choking hazard for Rhamphorhynchus

  1. Perhaps pterosaurs were intelligent enough to know what made a good meal and what didn’t. Squids octopus etc are a more specialised diet eaten by creatures that can demolish them. Most papers in the past led us to believe they were filter feeder types and those teeth formed a cage to trap whole prey. Is it possible that a squid and a pterosaur accidently attacked the same fish simultaneously and maybe even the fish escaped and the 2 predators, one from above and one from below became ensnared causing confusion and death to both?? I agree this is some imagination but it helps show that hunting scenarios are not clear cut black and white as a few “scientists” would like us to believe.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.