Lepidosaur bipedality and pelvis morphology: Grinham and Norman 2019

Grinham and Norman 2019
brings us a new look at 34 lepidosaur pelves with an emphasis on trends associated with bipedal locomotion. The authors illustrated 11 pelves (Fig. 1, white and yellow areas).
Figure 1. On the left, lepidosaur pelves from Grinham and Norman 2019, reordered phylogenetically here. On the right several tritosaur pelves and prepubes, most of which strongly demonstrate bipedal traits (elongate anterior ilium, increased sacral number). Yellow boxes indicate facultatively bipedal extant lepidosaurs.

Figure 1. On the left, lepidosaur pelves from Grinham and Norman 2019, reordered phylogenetically here. On the right several tritosaur pelves and prepubes, most of which strongly demonstrate bipedal traits (elongate anterior ilium, increased sacral number). Yellow boxes indicate facultatively bipedal extant lepidosaurs.

From the Grinham and Norman abstract:
“Facultative bipedality is regarded as an enigmatic middle ground in the evolution of obligate bipedality and is associated with high mechanical demands in extant lepidosaurs. Traits linked with this phenomenon are largely associated with the caudal end of the animal: hindlimbs and tail. The articulation of the pelvis with both of these structures suggests a morphofunctional role in the use of a facultative locomotor mode. Using a three-dimensional geometric morphometric approach, we examine the pelvic osteology and associated functional implications for 34 species of extant lepidosaur. Anatomical trends associated with the use of a bipedal locomotor mode and substrate preferences are correlated and functionally interpreted based on musculoskeletal descriptions. Changes in pelvic osteology associated with a facultatively bipedal locomotor mode are similar to those observed in species preferring arboreal substrates, indicating shared functionality between these ecologies.”
Unfortunately, Grinham and Norman omitted
tritosaur lepidosaurs from their study. In the Triassic many of them became bipeds and among these, pterosaurs achieved bipedalism supported with four, five and more sacral vertebrae between horizontally elongate ilia, convergent with dinosaurs. The addition of the prepubis virtually extended the anchorage for the puboischial muscles. After achieving flight, beach-combing pterosaurs reverted to a quadrupedal configuration with finger 3 pointing posteriorly. Giant Korean bipedal pterosaur tracks are best matched to large dsungaripterid/tapejarid clade taxa.
Unfortunately, Grinham and Norman reported,
“A recently published molecular-based time-calibrated phylogeny for Squamata was pared down to match the species in our dataset.” Their genomic cladogram bears little to no resemblance to the large reptile tree (LRT, 1635+ taxa), which tests traits, not genes. Once again, genes produce false positives. 
The authors’ principal component analysis of the pelvis failed 
to isolate bipedal lepidosaurs from the rest. Grinham and Norman reported, “The shape of the pelvis in facultatively bipedal extant lepidosaurs falls within the overall morphospace of lepidosaurs generally.” This is also visible in their illustrated pelves (Fig. 1). They also reported, However, it is generally found in a very concentrated area of that morphospace.” And Conclusions can be drawn regarding pelvic morphology and substrate use, although not with the same clarity as for locomotor mode.”
Grinham and Norman 2019 conclude,
“we have used 3D landmark-based geometric morphometrics to demonstrate that the overall morphospace for the lepidosaur pelvis is broad and wide-ranging. Within this overall morphospace, a small region is occupied by facultative bipeds. The vast majority of this smaller morphospace overlaps that occupied by species that show a preference for arboreal habitats. Pelvic morphological adaptations relevant for living in an arboreal environment are similar to those necessary to facilitate facultative bipedality.”
That’s interesting with regard to
the arboreal abilities of volant basal bipedal pterosaurs and their ancestors. Maybe next time Grinham and Norman will expand their study to include tritosaur lepidosaurs.

References
Grinham LR and Norman DB 2019. 
The pelvis as an anatomical indicator for facultative bipedality and substrate use in lepidosaurs. Biological Journal of the Linnean Society, blz190 (advance online publication) doi: https://doi.org/10.1093/biolinnean/blz190
https://academic.oup.com/biolinnean/advance-article-abstract/doi/10.1093/biolinnean/blz190/5687877Â
Peters D 2000b. A Redescription of Four Prolacertiform Genera and Implications for Pterosaur Phylogenesis. Rivista Italiana di Paleontologia e Stratigrafia 106 (3): 293–336.
Snyder RC 1954. The anatomy and function of the pelvic girdle and hind limb in lizard locomotion. American Journal of Anatomy 95:1-46.

Pterosaur prebubis

 

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.