Avimaia and her enormous egg

Bailleul et al. 2019 reported
on the posterior half of an Early Cretaceous enantiornithine bird from China, Avimaia schweitzerae (IVPP V25371, Figs. 1,2), including an enormous eggshell within her torso. The authors commented on the eggshell, which had not one, but several several layers, an abnormal condition, probably leading to the demise of the mother.

Phylogenetic analysis
The Bailleul et al. 2019 phylogenetic analysis nested Avimaia with eight most closely related taxa, of which only one, Cathayornis (Fig. 1), was also tested in the large reptile tree (LRT, 1425 taxa, subset Fig. 3) and likewise nested with Avimaia. Significantly, Cathayornis also has a very deep ventral pelvis capable of developing and expelling very large eggs.

Figure 1. Avimaia compared to Cathayornis to scale.

Figure 1. Avimaia compared to Cathayornis to scale. Cathayornis is the only other tested enantiornithine bird to have such a deep ventral pelvis.

A long, thin, straight, displaced bone was found
beneath the rib cage and identified as a rib by Bailleul et al. 2019. I wonder if it is instead a radius (Fig. 1) because it is not curved like a rib and it does not have an expanded medial process. The radius is vestigial. Regardless of the identify of this slender bone, Avimaia, appears to be ill-suited for flying based on her robust tibiae, short dorsal ribs  and giant egg. Cathayornis (Fig. 1) appears to be better-suited for flying, based on its chicken-like proportions.

Figure 2. Avimaia in situ. Some bones were originally mislabeled. Here the egg is reconstructed with a more traditional egg shape.

Figure 2. Avimaia in situ. Some bones were originally mislabeled. Here the egg is reconstructed with a more traditional egg shape.

Mislabeled bones
The right ‘pubis’ (Fig. 2) is the right ischium. The reidentified pubis has a pubic boot and the ischium does, not as in sister taxa. The authors failed to identify vestigial pedal digit 5.

The egg was originally reconstructed as a sphere (drawn as a circle) inside the abdomen. Here (Figs. 1, 2) the egg is reconstructed in a more traditional egg shape more likely to pass through the ischia and cloaca.

Figure 2. Subset of the LRT focusing on the clade Enantiornithes and the nesting of Avimaia as a derived taxon within that clade.

Figure 3. Subset of the LRT focusing on the clade Enantiornithes and the nesting of Avimaia as a derived taxon within that clade.

Most birds
lay more than one egg in a clutch. Another exceptional bird that develops a very large egg is the flightless kiwi (Apterypterx, Fig. 4).

Figure 2. Jurapteryx, Pseudocrypturus, Apteryx and Proapteryx to scale.

Figure 2. Jurapteryx, Pseudocrypturus, Apteryx and Proapteryx to scale.


References
Bailleul AM, et al. 2019. An Early Cretaceous enantiornithine (Aves) preserving an unlaid egg and probable medullary bone. Nature Communications. 10 (1275). doi:10.1038/s41467-019-09259-x
Pickrell, J 2019. “Unlaid egg discovered in ancient bird fossil”. Science. doi:10.1126/science.aax3954

wiki/Avimaia

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.