More DNA results for worm-snake interrelationships

Aurélien et al. 2018 bring us
molecular evidence for the paraphyly of Scolecophidia (burrowing miniaturized worm-snakes, Fig. 2), which they claim “represent the earliest branching clades within the snake tree.” Like others making the same claim before, this is a preposterous statement given the highly derived skulls of various burrowing snakes and the major lack of fossil stem snakes in their cladogram. The Aurélien et al. cladogram includes Varanus, Lacertidae and Anolis sp. as progressively more distant outgroup taxa, omitting (as in all DNA studies) even more fossil taxa.

We looked at
the previous DaSilva et al. 2018 study that took on the origin of snakes using DNA  and a few fossils earlier here (and see figure 1.)

The LRT ancestors of snakes
were recovered here (subset Fig. 1) five years ago.

Figure 1. Subset of the LRT focusing on squamates and snakes. Note how many key taxa in the origin of snakes have been omitted by the DaSilva et al. study.

Figure 1. Subset of the LRT focusing on squamates and snakes. Note how many key taxa in the origin of snakes have been omitted by the previous DaSilva et al. study.

Distinct from DNA studies 
the large reptile tree (LRT, 1308 taxa; subset in Fig. 1) employs fossil taxa and skeletal traits. In doing so burrowing snakes are recovered as a derived monophyletic clade displaying a gradual accumulation of derived traits in derived taxa (Fig. 2). And that makes sense. We expect a gradual accumulation of derived traits in derived taxa, and that’s exactly what you get in the snake section of the LRT. We learned earlier to distrust DNA studies when dealing with distantly related tetrapods, and this is yet another case of the same problem.

Figure 2. Heloderma, Lanthanotus, Anilius, Cylindrophis, Uropeltis, and Leptotyphlops to scale. Boxed scales are enlarged.

Figure 2. Heloderma, Lanthanotus, Anilius, Cylindrophis, Uropeltis, and Leptotyphlops to scale. Boxed scales are enlarged. The first two are not related to the worm snakes.

Leptotyphlops jaws movie

Figure 3. Click to animate. Leptotyphlops jaws move medially, not up and down. For this reason alone, Leptotyphlops is the most derived snake, not the most primitive one. A long list of other traits support that nesting.

References
Aurélian M et al. (5 co-authors) 2018. Molecular evidence for the paraphyly of Scolecophidia and its evolutionary implications. Journal of Evolutionary Biology DOI: 10.1111/jeb.13373 online here.
DaSilva FO et al. (7 co-authors) 2018. The ecological origins of snakes as revealed by skull evolution. Nature.com/Nature Communications (2018)9:376  1–11. DOI: 10.1038/s41467-017-02788-3 pdf

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.