Origin of pterosaurs and origin of archosauriforms abstracts

Part 2 
The following manuscripts are independently published online without peer-review at the DavidPetersStudio.com website. http://www.davidpetersstudio.com/papers.htm

Better to put them out there this way
than to let these works remain suppressed. Hope this helps clarify issues.

Peters D 2018c.
Cosesaurus avicepsSharovipteryx mirabilis and Longisquama insignis reinterpreted
PDF of manuscript and figures

Currently the majority of pterosaur and archosaur workers maintain the traditional paradigms that pterosaurs appeared suddenly in the fossil record without obvious antecedent and that pterosaurs were most closely related to archosaurs because they shared an antorbital fenestra and a simple hinge ankle. Oddly, these hypotheses continue despite the widely accepted acknowledgement that no archosauriformes document a gradual accumulation of pterosaurian traits. The minority view provided four phylogenetic analyses that documented a gradual accumulation of pterosaurian traits in three fenestrasaurs, Cosesaurus aviceps, Sharovipteryx mirabilis, and Longisquama insignis and their ancestors. These three also had an antorbital fenestra and a simple hinge ankle by convergence. Unfortunately the minority view descriptions also included several misinterpretations. Those are corrected here. The revised descriptions add further support to the nesting of pterosaurs with fenestrasaurs, a clade that now nests within a new clade of lepidosaurs between Sphenodontia and Squamata. The new data sheds light on the genesis of active flapping fight in the nonvolant ancestors of pterosaurs.

Peters, D. 2018d
Youngoides romeri and the origin of the Archosauriformes

Prior workers reported that all specimens attributed to Youngopsis and Youngoides could not be distinguished from the holotype of Youngina capensis. Others considered all specimens attributed to ProterosuchusChasmatosaurus and Elaphrosuchus conspecific. In both cases distinct skull shapes were attributed to taphonomic variations due to distortion pressure or allometric growth. Here a large phylogenetic analysis of the Amniota (1248 taxa) tests those hypotheses. The resulting tree recovers a den of small Youngina specimens preceding the Protorosauria. Another specimen nests at the base of the Protorosauria. Six others nest between the Protorosauria and the Archosauriformes. The most derived of these bears a nascent antorbital fenestra. Two other putative Youngina specimens nest at unrelated nodes. In like fashion, the various specimens assigned to Proterosuchus are recovered in distinct clades. One leads to the Proterochampsidae, Parasuchia and Choristodera. The latter lost the antorbital fenestra. Another clade leads to all higher archosauriforms. The present analysis reveals an evolutionary sequence shedding new light on the origin and radiation of early archosauriforms. Taphonomic distortion pressure and allometry during ontogeny were less of a factor than previously assumed. The splitting of several specimens currently considered Youngina and Proterosuchus into distinct genera and species is supported here.

These manuscripts benefit from
ongoing studies at the large reptile tree (LRT, 1251 taxa) in which taxon exclusion possibilities are minimized and all included taxa can trace their ancestry back to Devonian tetrapods.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.