New name and a name resurrection for two Solnhofen pterosaurs

Vidovic and Martill 2017
propose new and resurrect old generic names for two Solnhofen pterosaur specimens. Both are good and needed based on an earlier abstract (Peters 2007) and tree topology published here six years ago at in the large pterosaur tree (LPT, 232 taxa).

Vidovic and Martill remain completely in the dark regarding pterosaur ontogeny. As we learned earlier here, here and here from several adult and juvenile specimens, pterosaurs juveniles and embryos had adult proportions and that’s why they were mechanically able to fly shortly after hatching. Vidovic and Martill report, “It is difficult to distinguish ‘G. rhamphastinus’ (Fig. 3 from the holotype of D. kochi (Fig. 2) other than by using size-related criteria.” And, “juvenile pterosaurs with small crests have been identified.”

Also unfortunately,
Vidovic and Martill still consider pterosaurs to be derived archosaurs or archosauriforms. They report, “A cladistic analysis of the Pterosauria, including all the taxa discussed here, was performed. The analysis included 104 operational taxonomic units (OTUs) comprising 99 pterosaurs and five archosauriforms as an outgroup.” We have to ask ourselves, how long will pterosaur workers remain in the dark on these basic questions that were answered years ago? Look here, here (Peters 2000, 2007) and here.

Pterodactylus wastebasket
Vidovic and Martill write: “Until relatively recently, the genus Pterodactylus Cuvier, 1809 had been a wastebasket taxon that has included many diverse pterosaurs, including some that are now recognized as basal nonpterodactyloids.” We looked at the Pterodactylus wastebasket here in 2011 (Fig. `1).

The Pterodactylus lineage and mislabeled specimens formerly attributed to this "wastebasket" genus

Figure 1. Click to enlarge. The Pterodactylus lineage and mislabeled specimens formerly attributed to this “wastebasket” genus

Wellnhofer 1970
provided catalog numbers for dozens of Solnhofen specimens. Since those numbers are simpler than their museum numbers that’s how they are named (Figs. 2, 3) at

basal germanodactylids

Figure 2. Basal Germanodactylia, Three taxa preceding Germanodactylus rhamphastinus: No. 6, No. 12 and No. 23, the last renamed Diopecephalus kochi. These are all adults.

No. 23 — BSP AS XIX 3 — Diopecephalus kochi (formerly Pterodactylus kochi).
(Fig. 1, left). Seeley had it right originally. Vidovic and Martill correct a century of error when they report, “The holotype of ‘P. kochi’ was considered to belong to a distinct genus by Seeley (1871), which he  unambiguously named Diopecephalus Seeley, 1871.”

No. 64 — B St AS I 745  —
Altmuehlopterus (formerly Germanodactylus) rhamphastinus

Vidovic and Martill reported, “Many phylogenetic studies demonstrate that the two species of Germanodactylus nest together (Kellner 2003; Unwin 2003; Andres & Ji 2008; Lu et al. 2009; Wang et al. 2009; Andres et al. 2014) in a monophyletic clade, but a more focussed analysis by Maisch et al. (2004) demonstrates the genus to be paraphyletic. Maisch et al. (2004) created the nomen nudum Daitingopterus, intended for the reception of ‘G. rhamphastinus’ by placing the name in a table with no specific reference to a specimen.”

Figure 3. Germanodactylus rhamphastinus, No. 64 in the Wellnhofer 1970 catalog.

Figure 3. Germanodactylus rhamphastinus, No. 64 in the Wellnhofer 1970 catalog. Vidovic and Martill renamed this specimen Altmuehlopterus, which is fine and appropriate.

The LPT separates A. (G.) rhamphastinus from G. cristatus by two taxa.

Problems with the Vidovic and Martill 2017 tree:

  1. Lagerpeton nests with Marasuchus, both as proximal outgroups to the Pterosauria. Totally bogus. Tested, validated, real outgroups are listed here. The Fenestrasauria (Peters 2000) is overlooked in the text and references.
  2. Preondactylus and Austriadactylus nest as basalmost pterosaurs. Bergamodactylus, the basalmost pterosaur in the LPT, is excluded.
  3. Only one specimen each of Dorygnathus and Scaphognathus are employed. The LPT shows two clades of pterodactyloid-grade pterosaurs arise from various specimens of Dorygnathus while two others arise from tiny Scaphognathus specimens experiencing phylogenetic miniaturization.
  4. As a result (perhaps) toothy ornithocheirids nest with toothless pteranodontids. In the LPT ornithocheirids arise from equally tooth cycnorhyamphids while shartp-face pteranodontids arise from similar germanodactylids.
  5. The Darwinopterus clade nests as the proximal outgroup to the traditional Pterodactyloidea, when the LPT shows it to be a sterile clade with some pterodactyloid-grade traits.
  6. Altmuehlopterus (formerly Germanodactylus) rhamphastinus nests with G. cristatus
  7. Diopecephalus kochi nests with Pterodactylus antiquus.
  8. Those are the big problems. There are more, but I want to keep it pertinent.

Vidovic and Martill provide clues to their observational problems
when they note, “The genera Pterodactylus and Diopecephalus are remarkably similar.” No they aren’t! Species within the Pterodactylus clade are not even that similar!

Re: Germanodactylus and Pterodactylus,
Vidovic and Martill write: “We agree that some of the differences could be ontogenetically variable and perhaps vary between sexes, so in 1996 it seemed possible that the two species could be at least congeneric.” They disagree with the “common opinion” that the two are distinct genera. Let’s go with the evidence of a large gamut phylogenetic analysis — not opinion — or any analysis lacking so many pertinent taxa.

Vidovic and Martill 2017 rename G. rhamphastinus
Altmuehlopterus rhamphastinus. That’s good. It is generically distinct from its proximal relatives in the LPT. They report, “This name is presented as an alternative to the geographically significant name Daitingopterus (Maisch et al., 2004) which is a nomen nudum.” Not sure how all that falls. I’ll leave such issues to the PhDs.

If you like long nomenclature puzzles
you’ll like Vidovic and Martill 2017. They do a good job of running down all the names that prior workers gave to these century-old specimens. Beware that they are clueless as to the origin of pterosaurs, the ontogeny of pterosaurs and previous work on the phylogeny of pterosaurs based on a much larger taxon list of ingroup and outgroup taxa.

Peters D 2000. A redescription of four prolacertiform genera and implications for pterosaur phylogenesis. Rivista Italiana di Paleontologia e Stratigrafia 106: 293-336
Peters D 2007  The origin and radiation of the Pterosauria. Flugsaurier. The Wellnhofer Pterosaur Meeting, Munich 27. Abstract online here.
Vidovic SU and Martill DM 2017. The taxonomy and phylogeny of Diopecephalus kochi (Wagner, 1837) and ‘Germanodactylus rhamphastinus’ (Wagner, 1851). From: Hone DWE., Witton MP and Martill DM (eds) New Perspectives on Pterosaur Palaeobiology. Geological Society, London, Special Publications, 455,
Wellnhofer P 1970. Die Pterodactyloidea (Pterosauria) der Oberjura-Plattenkalke Süddeutschlands. Abhandlungen der Bayerischen Akademie der Wissenschaften, N.F., Munich 141: 1-133.



Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s