Several appearances and disappearances of the neck

FIgure 1. Panderichthys has no neck, but closely related Tiktaalki does have a neck.

FIgure 1. Panderichthys has no neck, but closely related Tiktaalki does have a neck.

One of the main differences between fish and tetrapods,
other than the transition from fins to feet, is the origin of the neck. famously in the amphibian-like fish, Tiktaalik (Fig. 2). The proximal outgroup taxon in the large reptile tree (LRT, 1016 taxa), Panderichthys (Fig. 1), does not have a neck. The skull and opercular bones are jammed up against the cleithrum (pectoral girdle) permitting no wiggle room. That wiggle room ultimately comes from the disappearance of those opercular bones.

Figure 1. Tiktaalik had a neck, that small space between its skull and pectoral girdle not seen in more primitive taxa.

Figure 2. Tiktaalik had a neck, that small space between its skull and pectoral girdle is not seen in more primitive taxa, which retain opercular bones, lost in Tiktaalik.

It is noteworthy
that more primitive taxa than Tiktaalik, in the Paratetrapoda, like Pholidogaster and Colosteus (Fig. 3) also lack a neck. The pectoral girdle extends beneath the posterior jaws, as in Osteolepis.

Figure 1. Colosteus relatives according to the LRT. Only Pholidogaster and Colosteus are taxa in common with traditional colosteid lists. Note the lack of a neck in Osteolepis, Pholidogaster and Colosteus.

Figure 3. Colosteus relatives according to the LRT. Only Pholidogaster and Colosteus are taxa in common with traditional colosteid lists. Note the lack of a neck in Osteolepis, Pholidogaster and Colosteus.

The first tetrapod clade,
(Fig. 9) with flat-headed Greererpeton at its base, had a neck, though not much of one. In related taxa like Gerrothorax (Fig. 4), the skull and torso were so wide that a neck would have been useless for lateral movements, but essential to help the skull rise during feeding (famously, like a toilet bowl lid!). More derived taxa in this clade, like Metoposaurus, had a little more neck represented by more space between the skull and pectoral girdle.

Figure 1. Gerrothorax, lacks a supratemporal rim and has laterally extended ribs, similar to those in Greererpeton.

Figure 4. Gerrothorax, has a wide skull and wide torso permitting little to no lateral skull movement, but vertical movement is not impeded.

The second tetrapod clade,
(Fig. 9) with Ossinodus and Acanthostega (Fig. 5) at its base, likewise did not have much of a neck. Perhaps there was less of a neck than in more basal Tiktaalik. This is a small clade with just these two members, so far.

Figure 4. Acanthostega does not have much of a neck.

Figure 5. Acanthostega does not have much of a neck. There is little wiggle room between the skull and pectoral girdle.

The third tetrapod clade,
(Fig. 9) with Pederpes and Crassigyrinus (Fig. 6) at its base likewise had very little wiggle room between the skull and cleithrum. Crassigyrinus had a short neck between its cheeks, so likely was immobile. In this clade derived members, Sclerocephalus and Eryops, document the third appearance of the neck in tetrapods. Even so, it was a very short relatively immobile neck.

Figure 5. Crassigyrinus has little to no neck.

Figure 6. Crassigyrinus has little to no neck. What neck it has is now tucked between its cheeks.

The fourth tetrapod clade
(Fig. 9) with Ichthyostega (Fig. 7) as its base, might have had some wiggle room between the skull and tall cleithrum. Not sure whether the small skull or large skull is correct. Certainly its phylogenetic successor, the reptilomorph Proterogyrinus (Fig. 8), had a substantial neck as did most of its descendants (but see below for notable exceptions).

Figure 6. Not sure which is more correct, but this Ichthyostega data shows little to no wiggle room for the larger skull, more for the smaller skull.

Figure 7. Not sure which is more correct, but this Ichthyostega data shows little to no wiggle room for the larger skull, much more for the smaller skull.

Basal reptilomorpha
and in the clade Seymouriamorpha, like Seymouria, and in the LRT leads to both Reptilia and Lepospondyli, had an increasingly mobile neck.

Figure 6. Proterogyrinus had a substantial neck.

Figure 8. Proterogyrinus had a substantial neck apart from the pectoral girdle.

The number of cervicals
remains low (under 4) in basal lepospondyls, and sometimes that number decreases to one. An exception, Eocaecilia, had 5 elongate cervicals. Basal amniotes, like Gephyrostegus, had six flexible cervicals.

Figure 4. Subset of the LRT with the addition of Lethiscus as a sister to Oestocephalus, far from the transition between fins and feet. Here the microsaurs are not derived from basal reptiles

Figure 9. Subset of the LRT with the addition of Lethiscus as a sister to Oestocephalus, far from the transition between fins and feet. Here the microsaurs are not derived from basal reptiles

Notable reversals, back to lacking a neck, include:

  1. Rana, the frog.
  2. Cacops the basal lepospondyl
  3. Mixosaurus, the ichthyosaur and
  4. Eubaelana, the right whale, with short fused cervicals
Figure 5. Eubalaena australis, the Southern right whale nests with Cetotherium in the LRT.

Figure 10. Eubalaena australis, the Southern right whale nests with Cetotherium in the LRT. Here the cereals are fused and immobile.

 

 

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s