Baby Limusaurus had teeth!

This is pretty remarkable.
Wang et al. 2016 reported on a growth series for Limusaurus (Xu et al. 2009; Jurassic, Oxfordian; 1.7m in est. length; IVPP V 15923; Figs. 1-5,) “the only known reptile to lose its teeth and form a beak after birth.”  

You might remember
Limusaurus became famous earlier for its tiny forelimbs complete with a digit 0 medial to digit 1, that made theropod workers go bonkers because they assumed the digits present were 1-4, not 0-3.

Figure 2. Limusaurus also has four fingers and a scapula with a robust ventral area, like Majungasaurus, but those four fingers are not the same four fingers found in Majungasaurus.

Figure 1. Limusaurus also has four fingers and a scapula with a robust ventral area, like Majungasaurus, but those four fingers are not the same four fingers found in Majungasaurus.

Wang et al. report,
“The available data are important for understanding the evolution of the avian beak.” Except… Limusaurus is not close to the avian line of ancestry anyway you look at it. The LRT nests Limusaurus, with or without teeth, with Khaan, a toothless, beaked oviraptorid. Wang et al. nest Limusaurus with Elaphrosaurus (Fig. 3) even though Khaan is part of their taxon list. So something is not scored right. Not sure about the discrepancy, but some of that could be due to the misidentification of manual digits 0-3.

Figure 3. Khaan, an oviraptorid that nests with Limusaurus in the large reptile tree AND the repaired Cau, Brougham and Naish tree.

Figure 2. Khaan, an oviraptorid that nests with Limusaurus in the large reptile tree AND the repaired Cau, Brougham and Naish tree.

Wang et al. report,
“The ontogenetically variable features (e.g. teeth/no teeth, etc.) have little effect on its phylogenetic position.” The LRT agrees. Wang et al. report that no matter which ontogenetic stage is tested for Limusaurus, it always nests with or near the ceratosaur, Elaphrosaurus (Fig. 3).The LRT disagrees.  In other words, with or without teeth, the topology does not change. In the LRT  toothed juvenile Limusaurus also nested with Khaan. Toothed Juravenator and Sinosauropteryx nest as sisters to that clade. The large Compsognathus specimen CNJ79 (Fig. 6) was a basal taxon. All of these sisters are closer to Limusaurus in size and morphology than is Elaphrosauru (Fig. 3).

Figure 3. Elaphrosaurus is known from a partial skeleton lacking a skull.

Figure 3. Elaphrosaurus is known from a partial skeleton lacking a skull. Adult Limusaurus added to scale. Wang et al. consider these two to be sister taxa among basal theropods, which is not confirmed by the LRT.

The ontogenetic series of Limusaurus
is shown in figure 4. Not all the specimens are complete. None are shown to scale. All are portrayed as tiny rough tracings. I think this lack of detail is one shortcoming of the paper.

Figure 4. Specimens attributed to Limusaurus, not to scale.

Figure 4. Specimens attributed to Limusaurus, not to scale, from Wang et al. 2016.

Wang et al. also provided
reconstructions of a juvenile and adult Limusaurus (Fig. 5). Unfortunately, Wang et al. filled in all the missing bones and gave both reconstructions something of a generic theropod character, lacking some of the traits unique to this genus.

Limusaurus reconstructions from Wang et al. 2016, to scale and not to scale.

Figure 5. Limusaurus reconstructions from Wang et al. 2016, to scale and not to scale. The angle of the pubis is difficult to determine.

That Limusaurus juveniles had teeth
and adults did not, tells us less about the avian line and more about the oviraptorid line of theropod dinosaurs.

Figure 1. The large (from Peyer 2006) and small Compsognathus specimens to scale. Several different traits nest these next to one another, but at the bases of two sister clades. Note the differences in the forelimb and skull reconstructions here. There may be an external mandibular fenestra. Hard to tell with the medial view and shifting bones.

Figure 6. The large (from Peyer 2006) and small Compsognathus specimens to scale. Several different traits nest these next to one another, but at the bases of two sister clades. Note the differences in the forelimb and skull reconstructions here. There may be an external mandibular fenestra. Hard to tell with the medial view and shifting bones.

References
Wang S, Stiegler J, Amiot R, Xu W, Du G-H, Clark JM, Xu X 2016. Extreme ontogenetic changes in a ceratosaurian theropod. Currently Biology 27:1-5 plus SupData.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s