Is this the footprint of Arizonasaurus?

Figure 1. Synaptichnium MNA V3425. Arrow points to direction of movement and aligns with sagittal plane. PILs and pads added.

Figure 1. Synaptichnium MNA V3425. Arrow points to direction of movement and aligns with sagittal plane. PILs and pads added. The pink manus track is another specimen.

The middle Triassic Moenkopi formation
in Arizona has provided a rich trove of fossils. An excellent footprint (MNA V3425, Fig. 1) was recently published online here and attributed to Arizonasaurus, a likely bipedal carnivorous archosauriform (Fig. 2). Arizonasaurus was derived from basal Rauisuchia, like Vjushkovia, and is most closely related to Yarasuchus and Qianosuchus according to the large reptile tree.

Figure 2. Arizonasaurus. Not sure which of the two mandibles is correct here, so both are presented. Note, neither manus nor pes is preserved in the specimen.

Figure 2. Arizonasaurus. Not sure which of the two mandibles is correct here, so both are presented. Note, neither manus nor pes is preserved in the specimen.

According to the online article,
“Paleontologist Christa Sadler has written a book, “Dawn of the Dinosaurs,” about the archosaurs of the Middle and Late Triassic in the region. Unusually detailed footprints of the large reptile, or something like it, are preserved in a slab of Moenkopi sandstone in the collections repository at the Museum of Northern Arizona, where Sadler has studied. MNA  [Museum of Northern Arizona] Colbert Collections Curator of Vertebrate Paleontology David Gillette, Ph.D., says the footprints were discovered in Wupatki National Monument in 1973.”

Figure 3. Manus impression of man v3245. Note the heavy scales here.

Figure 3. Manus impression of man v3245. Note the heavy scales here.

The LRT currently doesn’t include ichnites (footprints)
but let’s see what happens this time, since the track is so precisely imprinted. Unfortunately, Arizonasaurus does not preserve the manus or the pes (Fig. 1). Nevertheless, out of 801 candidate taxa, MNA 3425 nests with a sister to Arizonasaurus, Decuriasuchus, and is similar to the pes of other Arizonasaurus sisters, Qianosuchus and Nandasuchus, all Middle Triassic taxa. So, phylogenetic bracketing works, at least to this extent. And it just shows you don’t need a long list of character traits to successfully nest some taxa.

Figure 3. Scaly palms of two crocodilians. Digit 1 is on the left in both specimens.

Figure 4. Scaly palms of two crocodilians. Digit 1 is on the left in both specimens.

Notes on the scaly palm of MNA V3425
Dinosaur footprints do not have large scale impressions. By contrast, croc hands and feet do have large scales (Fig 3). The sisters to Arizonasaurus, Qianosuchus and Yarasuchus, both have short limbs, a long rostrum and a general crocodile-like build. Likewise Decuriasuchus was long-bodied, quadrupedal with a large foot and a presumably small hand (not preserved). In similar fashion, Arizonasaurus likely also had a large foot and small hand based on its pectoral and pelvic girdles and femur (Fig. 2), but was a likely biped.

Figure 5. Decuriasuchus does not preserve the manus, but it was probably small based on the forelimb.

Figure 5. Decuriasuchus does not preserve the manus, but it was probably small based on the forelimb.

Belated apologies
to those who tried [or continue to try] to access www.reptileevolution.com yesterday and today. Eviidently the server is down, wherever it is. I can’t access it either to make updates and repairs. Hopefully the RepEvo website will be restored soon. :  )

 

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s