Eoraptor Re-Reconstruction

Earlier we took note of the new nesting ofEoraptor as a basal sauropodomorph in Sereno (2013), matching its nesting in the large reptile tree.

The basal phytodinosaur, Eoraptor (Figs. 1, 2), has recently been described and illustrated (Sereno et al. 2013) in its entirety.

Figure 1. Eoraptor as illustrated by Carol Abraczinskas for Sereno et al. 2013.

Figure 1. Eoraptor as illustrated by Carol Abraczinskas for Sereno et al. 2013.

The Abraczinkas illustration (Fig. 1) portrays Eoraptor as a basic theropod, despite its nesting as a basal sauropomorph. I get the impression that the torso was done essentially freehand, especially with regard to the ribs. Fingers 4 and 5 are missing in the fossil because the matrix ends there. Descendant taxa (according to the large reptile tree), like Anchisaurus, Brachiosaurus and Iguanodon have fingers 4 and 5, so Eoraptor probably had them too. They are shown in figure 2 in pink.

Figure 2. Eoraptor based on tracing illustrations in Sereno et al. 2013, including the in situ composite image.

Figure 2. Eoraptor based on tracing illustrations in Sereno et al. 2013, including the in situ composite image. Here the ribs are shorter, fingers 4 and 5 are restored, the dorsal series is less arched, the dorsal ribs are shorter, the pelvis tilts further foreword and rides lower, the crus appears more robust and neural spines are more individualized and not generalized. Ribs are not shown from posterior cervicals. I’m struck by how robust the forelimbs are.

Several other differences in the new reconstruction more accurately reflect the in situ fossil, from which it was traced. The back was straighter without the shoulder hump found in figure 1. Other slight changes are listed in the figure two caption. Even so, this early biped appears to have had a carnivorous dentition that perhaps tasted plants occasionally.

Looks like a carnivore, except…
Sereno et al. (2013) report, “The first dentary tooth in Eoraptor, in addition, is retracted from the anterior end of the dentary, which is marked by a pair of conspicuous neurovascular foramina—features that characterize plant-eating basal sauropodomorphs. These features and the short length of the lower jaws suggest that there may have been a small keratinous beak at the anterior end of the lower jaws in Eoraptor and Panphagia. We have yet to discover a carnivorous dinosaur—or for that matter a carnivorous extant lizard—that has retained teeth for predation and that has inset these teeth from the anterior end of the lower or upper jaws (Sereno, 2012). This favors Eoraptor as a herbivore.”

Manual digits 4 and 5
In Eoraptor, Herrerasaurus and other basal dinos metacarpals 4 and 5 are tiny, almost vestigial (Fig. 2) yet in their descendant, Brachiosaurus, all five metacarpals are subequal. This is odd. Fingers and metacarpals usually disappear after they become vestiges, but not this time. Evidently metacarpals 3 and 5 re-elongated to support the weight when sauropod ancestors became quadrupedal.

Figure 3. Plateosaurus hand. Note metacarpal 4 is longer than in Eoraptor, but metacarpal 5 is not.

Figure 3. Plateosaurus hand. Note metacarpal 4 is longer than in Eoraptor, but metacarpal 5 is not.

In the prosauropod, Plateosaurus (Fig. 3), the hand is quite similar to that of Eoraptor. Metacarpal 4 is  about 3/4 the size of metacarpal 3 and three phalanges are present. Metacarpal 5 remains a vestige with a single phalanx. In the basal sauropod, Shunosaurus the lateral metacarpals are more nearly alike.  Somewhere between these two taxa, we find the origin of sauropods with longer lateral digits.

Wikipedia reports, 
“Evidence against sauropod ancestry within Prosauropoda comes from the fact that prosauropods had a smaller outer toe on their hind feet than the sauropods. Many maintain that it is easier for digits to be reduced or lost during evolution than the reverse, however there is no evidence for this. The lengthening, or gaining of extra digits is common in marine reptiles, and within the theropods digit lengthening occurred at least once. Therefore, using this as evidence against ancestral prosauropods is questionable.”

References
Sereno PC, Martînez RN and Alcober OA 2013. Osteology of Eoraptor lunensis (Dinosauria, Sauropodomorpha). Society of Vertebrate Paleontology Memoir 12, 32 (Supp. to #6):83-179.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.