More About Doswellia and Archeopelta

The phylogenetic position of Doswellia (Weems 1980) has been troublesome because it is so different from other Triassic reptiles. Recent cladistic analyses (Desojo, Ezcurra  and Schultz 2011) have shed light on the nesting of Doswellia and the large study has nailed it down.

Doswellia in several views

Figure 1. Doswellia in several views from Weems (1980).

Doswellia Basics
As a diapsid, Doswellia lost its lateral temporal fenestrae. The orbits were on top of the flattened skull. The missing rostrum was narrow and elongated if it fit the narrow and elongated mandible. The posterior mandible was deeper than the skull. Different than its sisters, the Doswellia ilia have rotated laterally such that the lateral surface now faces ventrally. The posterior dorsal ribs extended only laterally matching the elongated transverse processes of the anterior caudals. The anterior dorsal ribs extended laterally then abruptly turned ventrally at mid-length. The femur was relatively short, indicating a low-slung configuration. The seven cervicals were elongated such that the elongated, but relatively small skull was shorter than the cervicals.

That Very Strange Ilium Compared
(Desojo, Ezcurra  and Schultz 2011) compared the ilium of Doswellia (updated from Weems 1980) to several other reptiles. Unfortunately they included several unrelated taxa (Mesosuchus, Vancleavea and Erythrosuchus) and excluded Champsosaurus and Youngoides RC91, two Doswellia sisters in the large study. Fortunately Proterochampsa was tested against Doswellia and it nests as a close sister, but unfortunately no ilium has been published for this taxon. In this case, there were no closely related taxa with a similar ilium. Thus Doswellia is alone with regards to its ilium.

Fortunately the large study relies on a large suite of characters. Until a closer sister taxon comes along, Doswellia will continue to nest between Youngoides and Champsosaurus, with Archeopelta closer (but not yet included in the large study).

Comparing ilia to that of Doswellia.

Figure 2. Comparing various ilia to that of Doswellia (in pink). Desojo (2011) included an unrelated lepidosaur, Mesosuchus, an unrelated thalattosaur, Vancleavea, and an unrelated euarchosauriform, Erythrosuchus due to poor prior poorly assembled inclusion sets. Chanaresuchus is the closest sister in the top row and there was no resemblance. On the bottom row are Youngina and Champsosaurus, two closer sisters to Doswellia and even here there was no distinct synapomorphy. The ilium of Doswellia was oriented laterally, not vertically, like the others and that difference sets Doswellia apart from all known sister taxa. The ventral pelvis was medially oriented in Champsosaurus and Doswellia and the acetebulum was partly open ventrally.

Archeopelta
Archeopelta
 (Desojo, Ezcurra  and Schultz 2011) is known from less complete material (dorsals and a few other nearby parts), but appears to be the closest known sister with regard to a suite of characters not listed in the large study.

As always, I encourage readers to see specimens, make observations and come to your own conclusions. Test. Test. And test again.

Evidence and support in the form of nexus, pdf and jpeg files will be sent to all who request additional data.

References
Desojo JB, Ezcurra MD and Schultz CL 2011. An unusual new archosauriform from the Middle–Late Triassic of southern Brazil and the monophyly of Doswelliidae. Zoological Journal of the Linnean Society, 2011, 161, 839–871. DOI: 10.1111/j.1096-3642.2010.00655.x
Dilkes D and Sues H-D 2009. Redescription and phylogenetic relationships of Doswellia kaltenbachi (Diapsida: Archosauriformes) from the Upper Triassic of Virginia. Journal of Vertebrate Paleontology 29(1):58-79.
Weems RE 1980. An unusual newly discovered archosaur from the Upper Triassic of Virginia, U.S.A. Transactions of the American Philosophical Society, New Series 70(7):1-53

wiki/Doswellia

About these ads

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s